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1 Introduction

Our work studied a quantitative isoperimetric inequality under Ricci curvature bound condition
on (non-compact) weighted Riemannian manifolds.

Curvatures is an important concept in geometry as they are the geometric measures of the
non flatness of geometric shapes. From an analytic point of view, differential equations that
describe the physical phenomena in curved spaces are affected by the distortion of geometric
quantities that arose from the non flatness of the underlying spaces. Therefore, curvatures are
important in the study of functional analysis, differential equations, and the analysis of curved
spaces. Among various notions of curvatures, Ricci curvature is of interest. Ricci curvature can
be characterized by the measurement of how a shape is deformed as one moves along geodesics.
The lower bound of Ricci curvature allows one to extract global geometric and topological
information by comparison with a model space of constant curvature. For instance, positive
Ricci curvature bound implies the bound of diameter and degree of volume distortion of a ball
with respect to its radius.

In recent years, the theory developed by Lott, Sturm, and Villani has shed new light on
studies of lower bounds on Ricci curvature by connecting differential geometry with Wasserstein
geometry and optimal transport. Ricci curvature can be used to measure the distortion of
optimal transports between subsets in curved spaces, hence the study of Ricci curvature is
connected to the theory of optimal transport. Weighted Ricci curvature is modified to include
the appearance of density and based on the generalization of Brunn–Minkowsky inequality,
which extracts the relation between optimal transport and geometry of lower Ricci curvature
bound. In Riemannian setting, we can study this relation in the sense of weighted manifolds.

In weighted manifolds and metric measure spaces, the weighted Ricci curvature RicN in-
volving a parameter N called the effective dimension. On a weighted Riemannian manifold, the
weighted Ricci curvature bound RicN ≥ K is equivalent to the curvature dimension condition
CD(K,N) in the theory of Lott, Sturm, and Villani. The parameters K and N are interpreted
as “a lower bound of the Ricci curvature” and “an upper bound of the dimension”, respectively.
It is interesting that the condition RicN ≥ K > 0 would be satisfied by non-compact manifolds
when N = ∞. In this work, I would study the stability problem of the isoperimetric inequality
in Riemannian manifolds of Ric∞ ≥ K > 0 or the Bakry–Ledoux isoperimetric inequality.

The rigidity (to characterize a space attaining equality or model space) and stability (to show
that the space is close to the model space when equality nearly holds) problems are important
subjects in geometric analysis as they are connected with the theory of convergence of spaces.
Theses tasks in non-compact weighted manifolds are challenging because one might not be
able use traditional approach like maximal diameter argument. But a breakthrough named
needle decomposition was introduced by Klartag in ([Kl]) provided an efficient approach to
the rigidity and stability problems in non-compact weighted manifolds. Needle decomposition



is a localization technique to reduce high-dimensional inequalities into their one-dimensional
counterpart which enable one to use real analysis to verify.

In [Ma2], the author gave an alternative proof of the equality case of the Bakry–Ledoux
isoperimetric inequality via needle decomposition induced from the L1-optimal transport of the
isoperimetric minimizer. By reviewing this process, one might obtained the respected rigidity
result. It stated that if a weighted manifold satisfies the equality in isoperimetric inequality,
it must be isometric to the product of Gausian space and a hypersurface. This observation
comes from the fact that distance functions (or guiding function of the needle decomposition)
on needles playing the role of an eigenfunction in the sharp spectral gap inequality in [CZ].

Based on this observation, we studied a quantitative estimate of Bakry–Ledoux inequality
on weighted Riemannian manifolds with Ric∞ ≥ K > 0. We followed the proof in [Ma2] to
obtain an upper bound of the volume of the symmetric difference between a Borel set and
a sub-level set of the guiding function arising in the needle decomposition, in terms of the
deficit in Bakry–Ledoux’s Gaussian isoperimetric inequality. This work is the first quantitative
isoperimetric inequality on non-compact spaces besides Euclidean and Gaussian spaces so far.
Our main result is the following theorem.

Main Theorem (Theorem 7.5) Let (M, g,m) be a complete weighted Riemannian manifold
such that Ric∞ ≥ 1 and m(M) = 1. Fix θ ∈ (0, 1)\{1/2} and ε ∈ (0, 1), take a Borel set A ⊂M
with m(A) = θ, and assume that P(A) ≤ I(R,γ)(θ) + δ holds for sufficiently small δ > 0 (relative
to θ and ε). Then, for the guiding function u associated with A such that

∫
M u dm = 0, we have

min
{
m
(
A△{u ≤ aθ}

)
,m

(
A△{u ≥ a1−θ}

)}
≤ C(θ, ε)δ(1−ε)/(9−3ε).

We would explain the notions and geometric meaning of this result on the following sections.

2 Preliminaries

A weighted Riemannian manifold means a triple (M, g,m), where (M, g) be a connected, com-
plete C∞-Riemannian manifold of dimension n ≥ 2 without boundary and m = e−Ψ volg is
a measure modifying the volume measure volg of (M, g) with a C∞ weight function Ψ. In a
weighted Riemannian manifold, the Ricci curvature is modified as follow:

Definition 2.1 (Weighted Ricci curvature) Given v ∈ TxM and N ∈ R\{n}, the weighted
Ricci curvature RicN (v) is defined by

RicN (v) := Ricg(v) + HessΨ(v, v)− ⟨∇Ψ(x), v⟩2

N − n
.

As the limits of N → ∞ and N ↓ n, we also define

Ric∞(v) := Ricg(v) + HessΨ(v, v),

Ricn(v) :=

{
Ricg(v) + HessΨ(v, v) if ⟨∇Ψ(x), v⟩ = 0,

−∞ otherwise.

where Ricg(v) is the original Ricci curvature. We note that RicN (cv) = c2RicN (v) for all c ∈ R.
We also write RicN ≥ K for K ∈ R when RicN (v) ≥ K|v|2 holds for all v ∈ TM .

Remark 2.2 (i) By definition RicN enjoys the monotonicity

Ricn(v) ≤ RicN (v) ≤ Ric∞(v) ≤ RicN ′(v)



for N ∈ [n,∞) and N ′ ∈ (−∞, n). Therefore, Ric∞ ≥ K is weaker than RicN ≥ K with
N ∈ [n,∞).

(ii) The range N ∈ [n,∞] has been intensively studied by Bakry and his collaborators via Γ-
calculus (see [BaGL]), including the Bakry–Ledoux isoperimetric inequality under Ric∞ ≥
K > 0 ([BL]).

(iii) The curvature bound RicN ≥ K is equivalent to the curvature-dimension condition CD(K,N)
in the sense of Lott–Sturm–Villani, see [LV2, St1, St2, Vi].

We also define the Laplacian associated with m.

Definition 2.3 (Weighted Laplacian) The weighted Laplacian acting on u ∈ C∞(M) is de-
fined by

∆mu := ∆u− ⟨∇u,∇Ψ⟩,

where ∆ is the Laplacian with respect to g.

The Green formula also holds for m:∫
M
ϕ∆mu dm = −

∫
M
⟨∇ϕ,∇u⟩ dm,

for ϕ ∈ C∞(M) with compact support.
The condition Ric∞ ≥ K > 0 implies m has a Gaussian decay and m(M) < ∞ holds ([St1,

Theorem 4.26]). Without loss of generality, we can normalize m as m(M) = 1 since adding a
constant to Ψ does not change Ric∞. From Ric∞ ≥ K > 0 we also have the lower bound of the
first nonzero eigenvalue of −∆m as λ1 ≥ K, equivalent to the sharp Poincaré inequality.

Var(M,m)(u) :=

∫
M
u2 dm−

(∫
M
u dm

)2

≤ 1

K

∫
M

|∇u|2 dm. (2.1)

The rigidity problem was investigated in [CZ] as a counterpart to the celebrated Obata
rigidity theorem ([Ob]).

Theorem 2.4 (Rigidity of spectral gap) Let (M, g,m) be a complete weighted Riemannian
manifold satisfying m(M) = 1 and Ric∞ ≥ K > 0. If equality λ1 = K is achieved with an
eigenfunction u, then:

(i) (M, g,m) is isometric to the product space R×Σ as weighted Riemannian manifolds, where
Σ = u−1(0) and (Σ, gΣ,mΣ) is an (n − 1)-dimensional weighted Riemannian manifold of
Ric∞ ≥ K, and R is equipped with the Gaussian measure

√
K/(2π)e−Kx

2/2 dx.

(ii) The function u is constant on {t} × Σ for each t ∈ R, and we can moreover choose as
u(t, x) = t.

3 Isoperimetric inequalities

To state the isoperimetric inequality, we define the perimeter of a Borel set A ⊂ M with
m(A) <∞ as

P(A) := inf
{ϕi}i∈N

lim inf
i→∞

∫
M

|∇ϕi| dm, (3.1)

where {ϕi}i∈N runs over all sequences of Lipschitz functions converging to the indicator function
χA in L1(m). When P(A) <∞, we have P(X \A) = P(A).



Normalizing m(M) = 1, we define the isoperimetric profile as

I(M,m)(θ) := inf{P(A) |A ⊂M, m(A) = θ}

for θ ∈ (0, 1), where A runs over all Borel sets with m(A) = θ. An isoperimetric inequality
under the condition Ric∞ ≥ K > 0 was first shown by Bakry–Ledoux [BL] in the same form in
Gaussian spaces. Under a combination of RicN ≥ K and the diameter bound diam(M) ≤ D,
Milman [Mi1, Mi2] studied the following isoperimetric inequality:

Theorem 3.1 (Isoperimetric inequalities) Let (M, g,m) be a complete weighted Rieman-
nian manifold satisfying m(M) = 1, diam(M) ≤ D with D ∈ (0,∞], and RicN ≥ K for
N ∈ (−∞, 0) ∪ [n,∞] and K ∈ R. Then we have I(M,m)(θ) ≥ I(K,N,D)(θ) for all θ ∈ (0, 1),
where I(K,N,D) depends only on K,N and D.

This inequality is sharp in all the parameters K,N and D, and I(K,N,D) is independent from
the dimension n of M . For the precise formulas of the function I(K,N,D), we refer to [Mi1, Mi2].
Here we give the formula in the case K > 0 and N = ∞ as in Bakry–Ledoux inequality. Without
the diameter bound (D = ∞), the model space is the Gaussian space and

I(K,∞,∞)(θ) =

√
K

2π
e−Ka

2
θ/2, where

√
K

2π

∫ aθ

−∞
e−Kt

2/2 dt = θ.

For D ∈ (0,∞), we have
I(K,∞,D)(θ) = inf

ξ∈[−D,0]
fξ,D(θ)

with

fξ,D(θ) :=
e−Kb

2
θ,ξ,D/2∫ ξ+D

ξ e−Kt2/2 dt
, where

∫ bθ,ξ,D
ξ e−Kt

2/2 dt∫ ξ+D
ξ e−Kt2/2 dt

= θ.

The following lemma gives a look on how the diameter influences the isoperimetric profile.

Lemma 3.2 (Difference between I(K,∞,D) and I(K,∞,∞)) Let K,D ∈ (0,∞). For θ ∈ (0, 1),
we have

I(K,∞,D)(θ)− I(K,∞,∞)(θ) >

√
K

π

e−KD
2

√
KD + 1

.

Moreover, the profile I(K,∞,∞) is strictly concave by the following lemma.

Lemma 3.3 (Concavity of I(K,∞,∞)) For θ ∈ (0, 1), we have

I ′′
(K,∞,∞)(θ) = − K

I(K,∞,∞)(θ)
.

The rigidity result of Bakry–Ledoux inequality was provided Morgan [Mo, Theorem 18.7]
and an alternative proof based on the needle decomposition was introduced in [Ma2, Section 3].

Theorem 3.4 (Rigidity of isoperimetric inequality) Let (M, g,m) be a complete weighted
Riemannian manifold satisfying m(M) = 1 and Ric∞ ≥ K for some K > 0. If m+(A) =
I(K,∞,∞)(θ) holds for some A ⊂M with θ = m(A) ∈ (0, 1), then we have the following.

(i) (M, g,m) is isometric to the product space R×Σ as weighted Riemannian manifolds, where
(Σ, gΣ,mΣ) is an (n− 1)-dimensional weighted Riemannian manifold of Ric∞ ≥ K, and R
is equipped with the Gaussian measure

√
K/(2π)e−Kx

2/2 dx.

(ii) The set A is a half-space in this product structure, in the sense that A coincides with
(−∞, aθ]× Σ or [a1−θ,∞)× Σ.

Our motivation is to study a quantitative version of this theorem.



4 Needle decomposition

Our main approach on this study is the localization method called needle decomposition (also
called the localization), introduced by Klartag [Kl]. Via the needle decomposition one can reduce
an inequality on a high-dimensional space to those on geodesics.

At first, we define transport rays associated with a 1-Lipschitz function.

Definition 4.1 (Transport rays) Let u be a 1-Lipschitz function onM . We say that X ⊂M
is a transport ray associated with u if |u(x)−u(y)| = d(x, y) holds for all x, y ∈ X and if, for all
z ̸∈ X, there exists x ∈ X such that |u(x)− u(z)| < d(x, z).

Any transport ray is a closed set and necessarily the image of a minimal geodesic. Hence
each transport ray is equipped with the natural distance in real analysis. The next theorem is
the needle decomposition ([Kl, Theorems 1.2, 1.5]) with distance-like guiding function u acting
as a ‘guide’ of the decomposition.

Theorem 4.2 (Needle decomposition) Let (M, g,m) be a complete weighted Riemannian
manifold satisfying RicN ≥ K, and take a function f ∈ L1(m) such that

∫
M f dm = 0 and∫

M |f(x)|d(x0, x)m(dx) < ∞ for some x0 ∈ M . Then there exists a 1-Lipschitz function u on
M , a partition {Xq}q∈Q of M , a measure ν on Q and a family of probability measures {mq}q∈Q
on M satisfying the following.

(i) For any measurable set A ⊂ M , we have m(A) =
∫
Qmq(A) ν(dq). Moreover, for ν-almost

every q ∈ Q, we have supp(mq) = Xq.

(ii) For ν-almost every q ∈ Q, Xq is a transport ray associated with u. Moreover, if Xq is not
a singleton, then the weighted Ricci curvature of (Xq, | · |,mq) satisfies RicN ≥ K.

(iii) For ν-almost every q ∈ Q, we have
∫
Xq
f dmq = 0.

Our approach on quantitative isoperimetric inequalities based on Klartag’s proof in [Kl] of
the isoperimetric inequality (Theorem 3.1) via the needle decomposition. Here we give an outline
of this proof as we would give the quantitative estimate based on it.

Let (M, g,m) satisfy RicN ≥ K, diam(M) ≤ D and m(M) = 1. Given the volume parameter
θ ∈ (0, 1), we fix an arbitrary Borel set A ⊂ M such that m(A) = θ. We consider the needle
decomposition associated with the function f(x) := χA(x)− θ. Then we find

∫
M f dm = 0, and

obtain (Q, ν) and {(Xq,mq)}q∈Q associated with f as in Theorem 4.2. (iii) in Theorem 4.2 implies
mq(A) = θ for ν-almost every q ∈ Q. Moreover, (Xq, | · |,mq) preserving the curvature condition
CD(K,N) by (ii) and diam(Xq) ≤ D trivially. Therefore, the 1-dimensional isoperimetric
inequality yields P(A ∩Xq) ≥ I(K,N,D)(θ) for ν-almost every q ∈ Q, where P(A ∩Xq) denotes
the perimeter of A ∩Xq in (Xq, | · |,mq). By Lemma 6.2 in the later section, we obtain

P(A) ≥
∫
Q
P(A ∩Xq) ν(dq) ≥ I(K,N,D)(θ).

Taking the infimum in A gives I(M,m)(θ) ≥ I(K,N,D)(θ).

5 One-dimensional analysis

From this section, we normalize as K = 1 without loss of generality. In this section, we consider
1-dimensional spaces enjoying CD(1,∞) represent needles in the needle decomposition. Let
I ⊂ R be a closed interval equipped with a measure m = e−ψ dx, where dx denotes the Lebesgue



measure and ψ is locally Lipschitz. If (I, | · |,m) satisfying CD(1,∞) then ψ is 1-convex in the
following sense:

ψ
(
(1− t)x+ ty

)
≤ (1− t)ψ(x) + tψ(y)− (1− t)t

2
|x− y|2

for any x, y ∈ I and t ∈ (0, 1).
The following lemma in ([Bo, Proposition 2.1]) enables one to simplify the calculation on

isoperimetric minimizer to 1-dimensional halfspaces.

Lemma 5.1 Let m = e−ψ dx be a probability measure on a closed interval I ⊂ R such that
ψ is convex. Then the minimum of P(A) on the class of all Borel sets A ⊂ I with m(A) = θ
coincides with the minimum on the subclass consisting of the (semi-infinite) intervals (−∞, a]∩I
and [b,∞) ∩ I.

The next proposition is the core estimate in 1-dimensional analysis as we shall compare m
on I with the Gaussian measure γ on R with mean 0 and variance 1, denoted by

γ :=
1√
2π

e−x
2/2 dx = e−ψg(x) dx, ψg(x) := log

(√
2π

)
+

1

2
x2.

Proposition 5.2 (Difference of weight functions) Let I ⊂ R be a closed interval equipped
with a probability measure m = e−ψ dx such that ψ is 1-convex. Fix θ ∈ (0, 1) and assume that∫

I∩(−∞,aθ]
e−ψ dx = θ (5.1)

and that
e−ψ(aθ) ≤ e−ψg(aθ) + δ (5.2)

holds for sufficiently small δ > 0 (relative to θ). Then we have

ψ(x)−ψg(x) ≥
(
ψ′
+(aθ)− aθ

)
(x− aθ)− ω(θ)δ (5.3)

for every x ∈ I, and

ψ(x)−ψg(x) ≤
(
ψ′
+(aθ)− aθ

)
(x− aθ) + ω(θ)

√
δ (5.4)

for every x ∈ [S, T ] such that limδ→0 S = −∞ and limδ→0 T = ∞, where ψ′
+ denotes the right

derivative of ψ and ω(θ) is a constant depending only on θ.

With the help of Proposition 5.2, we obtain the following result as a quantitative version of
Lemma 5.1 in 1-dimensional spaces. It states that a set with small isoperimetric deficit would
have small symmetric difference with a half space.

Proposition 5.3 (Small symmetric difference) Let I ⊂ R be a closed interval equipped with
a probability measure m = e−ψ dx such that ψ is 1-convex. Fix θ ∈ (0, 1) and assume that, for a
Borel set A ⊂ I with m(A) = θ,

P(A) ≤ e−ψg(aθ) + δ

holds for a sufficiently small δ > 0. Then we have

min
{
m
(
A△ (−∞, r−m (θ)]

)
,m

(
A△ [r+m (θ),∞)

)}
≤

P(A)− I(I,m)(θ)

C1(θ, δ)
, (5.5)

where r−m (θ), r
+
m (θ) ∈ I are defined by

m
(
I ∩ (−∞, r−m (θ)]

)
= m

(
I ∩ [r+m (θ),∞)

)
= θ,

and limδ→0C1(θ, δ) = ∞.



6 Reverse Poincare inequality

To study the well-behavior of the guiding function when the isoperimetric deficit is small, we
consider the reverse direction of the Poincaré inequality as the guiding function of the needle
decomposition plays the role of eigenfunction in the equality case of sharp Poincaré inequality.
In 1-dimensional space with a small isoperimetric deficit, we obtain:

Proposition 6.1 (Reverse Poincaré inequality on needles) Let I ⊂ R be a closed interval
equipped with a probability measure m = e−ψ dx such that ψ is 1-convex. Fix θ ∈ (0, 1) and
assume (5.1) and e−ψ(aθ) ≤ e−ψg(aθ) + δ. Then, given ε ∈ (0, 1), if δ > 0 is sufficiently small
(relative to θ and ε), we have

Var(I,m)(u) :=

∫
I
u2 dm−

(∫
I
u dm

)2

≥ 1

Λ(θ, ε, δ)

∫
I
|u′|2 dm (6.1)

for every affine function u(x) = ax+ b with a, b ∈ R, where Λ(θ, ε, δ) ≤ (1− C2(θ, ε)δ
(1−ε)/2)−1

and, in particular, limδ→0 Λ(θ, ε, δ) = 1.

Put f := χA − θ and denote by (Q, ν) and {(Xq,mq)}q∈Q the elements of the needle decom-
position as in Theorem 4.2 that we used to prove the isoperimetric inequality. (Xq,mq) enjoys
Ric∞ ≥ 1 (or CD(1,∞)) for ν-almost every q ∈ Q and we define Aq := A ∩Xq for q ∈ Q.

To extend the reverse Poincaré inequality to the high-dimensional manifold, we would make
use of the following lemma which gives the nice decomposition of the isoperimetric deficit.

Lemma 6.2 (Decomposition of deficit) We have

P(A)− I(R,γ)(θ) ≥
∫
Q

(
P(Aq)− I(R,γ)(θ)

)
ν(dq),

where P(Aq) denotes the perimeter of Aq in (Xq,mq).

Let u : M −→ R be the guiding function associated with f = χA − θ above. A reverse
inequality is obtained by integrating (6.1) on needles.

Theorem 6.3 (Reverse Poincaré inequality) Let (M, g,m) be a complete weighted Rieman-
nian manifold such that Ric∞ ≥ 1 and m(M) = 1. Fix θ, ε ∈ (0, 1) and take a Borel set A ⊂M
with m(A) = θ and P(A) ≤ I(R,γ)(θ) + δ for sufficiently small δ > 0 (relative to θ and ε). Then
the guiding function u associated with f = χA − θ satisfies

Var(M,m)(u) ≥
1

Λ′(θ, ε, δ)
=

1

Λ′(θ, ε, δ)

∫
M

|∇u|2 dm,

where Λ′(θ, ε, δ) ≤ (1− C ′
2(θ, ε)δ

(1−ε)/(3−ε))−1 and in particular limδ→0 Λ
′(θ, ε, δ) = 1.

7 Quantitative Bakry–Ledoux inequality

In this section we would give an outline of approach to our main result. Let (M, g,m) be a
weighted Riemannian manifold with Ric∞ ≥ 1 and m(M) = 1, fix θ ∈ (0, 1) and take a Borel
set A ⊂ M with m(A) = θ. We consider the needle decomposition associated with f := χA − θ
and obtain the guiding function u with

∫
M u dm = 0, a partition (Xq,mq)q∈Q and a probability

measure ν on Q. Set Aq := A ∩Xq as in the previous section.



We set δ(A) := P(A)− I(R,γ)(θ) and define the ’long’ needles (as small deficit implies large
diameter):

Qℓ :=
{
q ∈ Q

∣∣P(Aq)− I(R,γ)(θ) <
√
δ(A)

}
(7.1)

The decomposition of deficit in Lemma 6.2 implies the following.

Lemma 7.1 (Qℓ is large) We have ν(Qℓ) ≥ 1−
√
δ(A).

To study the behavior of long needles, we define two sets of different directions of the isoperi-
metric minimizers:

Q−
ℓ :=

{
q ∈ Qℓ

∣∣mq

(
Aq△ (−∞, r−mq

(θ)]
)
≤

√
δ(A)

}
,

Q+
ℓ :=

{
q ∈ Qℓ

∣∣mq

(
Aq△ [r+mq

(θ),∞)
)
≤

√
δ(A)

}
,

(7.2)

where Xq is parametrized by u and r±mq
(θ) ∈ Xq are defined by

m
(
Xq ∩ (−∞, r−mq

(θ)]
)
= m

(
Xq ∩ [r+mq

(θ),∞)
)
= θ

as in Proposition 5.3.
The next lemma is a consequence of Proposition 5.3.

Lemma 7.2 (Q−
ℓ ∪Q+

ℓ is large) If δ(A) is sufficiently small, then we have

ν
(
Qℓ \ (Q−

ℓ ∪Q+
ℓ )

)
≤

√
δ(A).

Via the reverse Poincaré inequality, we obtain the following proposition which shows the
guiding function u behaves well when the deficit is small.

Proposition 7.3 (u is nearly centered on most needles) If δ(A) is sufficiently small, then
there exists a measurable set Qc ⊂ Q such that ν(Qc) ≥ 1− δ(A)(1−ε)/(9−3ε) and

max
{
|aθ − r−mq

(θ)|, |a1−θ − r+mq
(θ)|

}
≤ C3(θ, ε)δ(A)

(1−ε)/(9−3ε) (7.3)

holds for every q ∈ Qc ∩Qℓ.

By the well-behavior of the guiding function, one might obtain that one of Q−
ℓ and Q+

ℓ has
a small volume or most of needles have the same direction of the isoperimetric minimizers. We
need an additional assumption θ ̸= 1/2 as a technical condition.

Proposition 7.4 (One of Q−
ℓ and Q+

ℓ is small) Assume θ ̸= 1/2. Then we have

min{ν(Q−
ℓ ), ν(Q

+
ℓ )} ≤ C4(θ)δ(A)

(1−ε)/(9−3ε),

provided that δ(A) is sufficiently small.

Now we would give the proof of the main theorem by applying the previous results on this
section.

Theorem 7.5 (Quantitative isoperimetry) Let (M, g,m) be a complete weighted Rieman-
nian manifold such that Ric∞ ≥ 1 and m(M) = 1. Fix θ ∈ (0, 1) \ {1/2} and ε ∈ (0, 1), take
a Borel set A ⊂ M with m(A) = θ, and assume that P(A) ≤ I(R,γ)(θ) + δ holds for sufficiently
small δ > 0 (relative to θ and ε). Then, for the guiding function u associated with A such that∫
M u dm = 0, we have

min
{
m
(
A△{u ≤ aθ}

)
,m

(
A△{u ≥ a1−θ}

)}
≤ C(θ, ε)δ(1−ε)/(9−3ε). (7.4)



Proof. By Proposition 7.4, we first assume ν(Q+
ℓ ) ≤ C4(θ)δ

(1−ε)/(9−3ε) without loss of general-
ity. From Lemmas 7.1 and 7.2,

ν(Q \Q−
ℓ ) = ν(Q \Qℓ) + ν

(
Qℓ \ (Q−

ℓ ∪Q+
ℓ )

)
+ ν(Q+

ℓ ) ≤ 2
√
δ + C9(θ)δ

(1−ε)/(9−3ε).

Therefore we obtain

m
(
A△{u ≤ aθ}

)
≤

∫
Q−

ℓ

mq

(
Aq△ (−∞, aθ]

)
ν(dq) + ν(Q \Q−

ℓ )

≤
∫
Q−

ℓ

mq

(
(−∞, aθ]△ (−∞, r−mq

(θ)]
)
ν(dq) +

∫
Q−

ℓ

mq

(
Aq△ (−∞, r−mq

(θ)]
)
ν(dq)

+ ν(Q \Q−
ℓ )

≤
∫
Q−

ℓ

mq

(
(−∞, aθ]△ (−∞, r−mq

(θ)]
)
ν(dq) + 3

√
δ + C4(θ)δ

(1−ε)/(9−3ε). (7.5)

Proposition 7.3 implies that |aθ − r−mq
(θ)| ≤ C3(θ, ε)δ

(1−ε)/(9−3ε) for q ∈ Qc ∩Qℓ. Hence,

mq

(
(−∞, aθ]△ (−∞, r−mq

(θ)]
)
= mq

(
min{aθ, r−mq

(θ)},max{aθ, r−mq
(θ)}

)
≤ C(θ, ε)δ(1−ε)/(9−3ε)

for q ∈ Qc ∩Qℓ. Substituting into (7.5), we obtain

m
(
A△{u ≤ aθ}

)
≤ C(θ, ε)δ(1−ε)/(9−3ε) + ν(Q−

ℓ \Qc) + 3
√
δ + C4(θ)δ

(1−ε)/(9−3ε)

≤ C(θ, ε)δ(1−ε)/(9−3ε).

2
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