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ABSTRACT. Weavings are historically well-known structures in materials science, and have more re-
cently become a very active research topic in mathematics. We will first attempt to present a formal
mathematical definition of a weave, as a three-dimensional entangled network embedded into the thick-
ened Euclidean plane. Next, we will also introduce a new construction method to build and classify a
class of weaving diagrams - which are projections of weaves as in knot theory – using topological and
combinatorial arguments.

1. WEAVES AND THEIR DIAGRAMS

A weave W is defined as a three-dimensional object embedded in the topological ambient space
X3 = E2× I, with I = [−1,1]. Here, we will only consider a class of two-periodic Euclidean weaves
and we will study their two-dimensional projections by a map π : X3→ E2, (x,y,z) 7→ (x,y,0). Such
a class is particular in that the weaves are constructed from straight lines which entangle in a cyclic
pattern of overcrossings and undercrossings. We usually call such a structure a doubly periodic un-
twisted (p,q)-weave, but we will simply use the term weave from now on for simpler notation.

Definition 1.1. A weave W is an embedding in X3 of infinitely many threads belonging to N ≥ 2
disjoint sets of threads T1, . . . ,TN , entangled to each other with respect to a set of crossing sequences
{Ci, j | i, j ∈ (1, ...,N), i 6= j} such that,

• a thread t is a set homeomorphic to R, embedded in X3 as a geodesic ;
• two threads belong to different sets of threads if their respective projections onto E2 by π

intersect only once ;
• a crossing c is an intersection between the projections of two distinct threads onto E2 by π

with an over or under information ;
• a crossing sequence Ci, j = (p,q) indicates that for any thread of the set Ti, there are cycli-

cally p crossings in which this thread is over the other strands of Tj, followed by q crossings
in which it is under.

Then, a weave W in a general position on X3 can be projected onto the Euclidean plane by the map
π , as in knot theory [1]. This projection leads to a planar quadrivalent connected graph W0, meaning
that all the vertices have a degree four, and like in [2]., in the particular case of a doubly periodic
structure, any unit cell can be seen as a link in the thickened torus as described in Figure 1.

Definition 1.2. The projection W0 of a weave W onto X2 by the map π : X3→ X2, (x,y,z) 7→ (x,y,0)
is called a regular projection, and once an over or under information is given at each vertex of W0,
we say that this structure is an infinite weaving diagram DW0 . Moreover, if DW0 is doubly periodic,
then any unit cell contains non-trivial simple closed curve components and is called a torus diagram.



3D infinite weave

2D regular projection 
+

Crossing information 

Infinite periodic diagram Torus-diagram

FIGURE 1. Weaving Diagram

2. EQUIVALENCE CLASSES OF WEAVES

Weaves are mainly characterized by a number N of disjoint sets of threads and a set of crossing
sequences Σ, and as seen above, it is convenient to study their planar diagrams. Given a graph Γ

satisfying the definition of a regular projection and a set Σ, it is possible to build a weaving diagram
by assigning an over or under information to each vertex. However, this attribution is not unique
as illustrated by some examples of existing woven materials showing that the weaving diagrams of
two distinct weaves can be reconstruct from the same pair (Γ,Σ). The simplest cases are the diagrams
related to the basket weave (2,2) and the twill weave (2,2), showed in the Figure 2 below. Nevertheless,
these two woven materials have distinct physical properties, such as strength or stiffness, and it is
important to characterize these differences from a mathematical point of view.

FIGURE 2. Twill and Basket (2,2) square weaving diagram with their associate design.

This observation motivated the study of equivalence classes of weaves and the development of
a new parameter Π, such that any weaving diagram constructed from the triple (Γ,Σ,Π) would be
unique, up to equivalence. The notion of equivalence has been defined by S. Grishanov et al. by
an extension of the classic Reidemeister Theorem for the case of doubly periodic weaves that can be
studied from their torus diagrams [2].

Theorem 2.1. (Reidemeister Theorem for Weaves [2])
Two weaves in X3 are ambient isotopic if and only if their torus diagrams can be obtained from

each other by a sequence of Reidemeister moves Ω1, Ω2, and Ω3, isotopies on the surface of the torus,
and torus-twists.
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FIGURE 3. Reidemeister moves

To create our new parameter, we were inspired by the concept of design used for the classification
of weaves in the textile industry. A design characterizes on a square grid the configuration of the
crossings on a torus diagram according to the crossing sequence, for the restricted case of N = 2.
More information on designs from a mathematical viewpoint can be found in the work of Grünbaum
and Shephard in [3], and an example is given in Figure 3 for the basket and twill weaves mentioned
above. To read them, consider that the rows represent the horizontal strands on a unit cell, the columns
the vertical strands, and each square represents a crossing. Here, a gray square corresponds to a cross-
ing where the horizontal strand is under the vertical strand, and conversely for a black square. Notice
in Figure 2 that the gray and black squares have a diagonal organization for the case of twill weave,
while they have a bloc organization for the case of basket weave. This illustrates the fact that there
are different possibilities of assigning the crossing information to a same graph Γ, given a (set of)
crossing sequence(s), and this justifies the different physical properties of the corresponding woven
materials.

Our purpose is to generalize this concept to weaving diagrams with N ≥ 2 sets of threads, so that it
can describe the organization of crossings for each pair of sets of threads on a unit cell. Our approach
consist in creating a set of crossing matrices associated with a flat torus diagram which would make
it possible to distinguish the structures characterized by the same pair (Γ,Σ), and thus become a
weaving invariant for the infinite diagram DW0 . Our concept of crossing matrices is directly related to
the crossing sequences of a weaving diagram DW0 , which means that each matrix is associated with a
pair of distinct sets of threads of the diagrams. The elements of a crossing matrix are the symbols +1
representing an overcrossing, or−1 representing an undercrossing. Each matrix encodes the crossing
configuration between two sets of threads, from the point of view of one of them. This means that
at an arbitrary crossing between two threads t1 ∈ T1 and t2 ∈ T1, with T1 and T2 two disjoint sets of
threads, t1 is over (or under) t2, if we analyze the position of the threads of T1 with respect to the
threads of T2, or conversely.

Definition 2.2. Let Ci, j = (p,q) be the crossing sequence of the sets Ti and Tj of a weaving diagram
DW0 with N ≥ 2 sets of threads, i, j ∈ {1, · · · ,N}. Let Mi, j be a (m x m) matrix consisting of symbols
+1 and −1, where m = p+q is called the module of Mi, j. Then, Mi, j is called the crossing matrix of
DW0 associated with Ci, j, if each row and each column of Mi, j simultaneously contains p symbol +1
and q symbols −1, considering cyclic and countercyclical permutations of the rows and columns of
the matrix.

This concept of crossing matrix makes it possible to distinguish two weaving diagrams character-
ized by the same pair (Γ,Σ), by assigning them a fixed sequence of crossing matrices Π= {Mi, j \ i, j ∈
{1, · · · ,N}}, and such that the sets of threads are indexed on W0 in order to compare the strands having
the same direction on the two diagrams. So now, it is possible to characterize the notion of equiv-
alence classes for weaving diagrams of E2, using the triple (Γ,Σ,Π). Recall that the Reidemeister
Theorem for Weaves defines the notion of equivalent weaves through the equivalence of their corre-
sponding torus diagrams, so we will show the invariance by the Reidemeister moves and the torus’
twists.



Theorem 2.3. Let DW1 and DW2 be two torus-diagrams with N ≥ 2 sets of threads, indexed such that
their regular projections are identical, and with the same set of crossing sequences. Then, they are
equivalent if and only if their crossing-matrices are pairwise equivalent, meaning that if at least one
of the two conditions is satisfied:

• all the matrices of DW2 are equivalent to the respective matrices of DW1 , up to a same cyclic
or countercyclical permutations of all the rows and/or columns;
• all the matrices of DW2 are equivalent to the respective matrices of DW1 , up to a same clock-

wise of counterclockwise rotation of π

4 or π

2 , together with an inversion of all its symbols.

One of the other great interests of these crossing matrices for the study of equivalence classes of
weaving diagrams is that by defining any arbitrary weaving diagram by a triple (Σ′,Σ,Π), we can find
non equivalent structures with the same pair (Σ′,Σ) just by using non-equivalent crossing matrices.
This is very useful for the construction an classification of our diagrams.
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