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Abstract

We are concerned with L∞-global bounds for global solutions of a system of some semi-
linear heat equations with subcritical Ambrosetti-Rabinowitz condition. For single equation
case with polynomial term, it is known that global solutions have L∞-global bounds under
appropriate conditions. In particular, we will show that the global solutions to our problem
has L∞-global bounds which extends the result from single semilinear parabolic equation
case to a system of semilinear parabolic equations.
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1 Introduction

1.1 Background and motivation

There have been a lot of studies on semilinear parabolic PDEs (see e.g. [2], [4], [8], [12], [15],
[16], [17], etc). However, most of the results are related to semilinear parabolic PDEs with
(Fujita type) polynomial nonlinearity. As an example, let N ∈ N, a ∈ R, θ ∈ (2, 2∗), Ω ⊂ RN
be a smooth bounded domain in RN , and consider

∂tu = ∆u+ au+ u|u|θ−2 in Ω× (0,∞),

u( · , t) = 0 on ∂Ω× (0,∞),

u( · , 0) = u0 in Ω,

(P0)

where u0 ∈ L∞(Ω) ∩ H1
0 (Ω) (for simplicity), and recall critical Sobolev exponent 2∗ := 2N

N−2
when N ≥ 3 and 2∗ :=∞ when N = 1, 2. When a = 0, we have the usual Fujita type equation.

In general, results for local existence of solution for (P0) when a = 0 has been proven by
Weissler in [19]. Moreover, Weissler also shows that global existence to Problem (P0) for small
non-negative initial data in [18]. In fact, Cazenave, Dickstein, and Weissler show that time
global sign-changing solutions to Problem (P0) exist for some initial data in [3].

Next, we will briefly discuss some known results related to the behavior of global solution
to Dirichlet problem (P0). First, we recall that for θ ∈ (2, 2∗) (subcritical case), Cazenave
and Lions show that any global solution of (P0) with initial data in C2(Ω) has an L∞-global
bound in [5]. However, when θ ≥ 6N+4

3N−4 , the dependence of any given initial data in C2(Ω)
for time global bounds is unclear. Some related results are also given by Giga in [11]. Here,
the results of Cazenave and Lions in [5] are extended to full subcritical nonlinearity provided
a = 0 and the solution is nonnegative. Moreover, the results can be extended even further by



removing the assumption of nonnegativity of global solutions as shown by Ishiwata in [13]. In
fact, the existence of time global bounds of global solutions to (P) can be obtained under some
appropriate conditions for the energy functional of (P0).

Both necessary and sufficient conditions for the existence of time global bounds of (P0) have
been obtained by Ishiwata in [13]. Namely, a global solution of (P0) has an L∞-global bound if
and only if the energy functional associated with (P0) satisfies the Palais-Smale condition along
the trajectory of the solution itself.

In particular, we would like to study the behavior of global solutions to a system of semilinear
parabolic equations with more general nonlinearity compared to the usual polynomial nonlin-
earity in Fujita Type equation. For instance, our result here covers logarithmic functions (1) as
principle nonlinearity. Since we impose condition (N2) to the nonlinear term, it is essentially
still a subcritical nonlinear term. Therefore, we expect that global solutions to (P) have time
global bounds as in single equation case with polynomial nonlinearity. Our main result confirms
that our global solutions indeed have time global bounds.

1.2 Problem

Let N ∈ N, a1, a2, b ∈ R, and Ω ⊂ RN be a bounded smooth domain. Moreover, we denote
2∗ := 2N

N−2 when N ≥ 3 and 2∗ := ∞ when N = 1, 2 as the critical Sobolev exponent. We
consider the following system of semilinear heat equations:

∂tu = ∆u+ a1u+ bv + f(u, v) in Ω× (0,∞),

∂tv = ∆v + bu+ a2v + g(u, v) in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

v = 0 on ∂Ω× (0,∞),

u( · , 0) = u0 in Ω,

v( · , 0) = v0 in Ω,

(P)

where u0, v0 ∈ L∞(Ω)∩H1
0 (Ω). Moreover, we also impose the following conditions for f and g:

(N1) f, g : R2 → R is locally Lipschitz in R and f(0, 0) = g(0, 0) = 0.

(N2) There exists α > 1, β > 1 so that α+ β = p ∈ [2 + 2
N , 2

∗), and CN2 > 0 for any
(u, v) ∈ R2 with |f(u, v)| ≤ CN2|u|α−1|v|β and |g(u, v)| ≤ CN2|u|α|v|β−1.

(AR) There exists F : R2 → R which satifies the following conditions:

(AR0) For any (u, v) ∈ R2, ∇F (u, v) = (f(u, v), g(u, v))T.
(AR1) F is positive in R2 \ {(0, 0)}.
(AR2) There exists µ > 2 for any (u, v) ∈ R2 with µF (u, v) ≤ uf(u,v)+vg(u,v)

2 .

In particular, we are concerned with a system of semilinear heat equations with subcritical gen-
eral nonlinearity.

For instance, we can consider an example when Ω ⊂ R3 with α = 2, β = 2.2 and µ = 2.1 as
follows: {

f(u, v) = 2u log(1 + |u|2) + 2u3|v|2.2
1+|u|2 ,

g(u, v) = 2.2u2 log(1 + |u|2)v|v|0.2,
(1)

which satisfies (N1), (N2), and

F (u, v) = u2 log(1 + |u|2)|v|2.2 (2)



satisfies (AR) where ∇F (u, v) = (f(u, v), g(u, v))T. Clearly, we can see that (1) is not a poly-
nomial nonlinearity.

Next, we define

A :=

(
a1 b
b a2

)
with eigenvalue µ1 and µ2. (3)

Without loss of generality, we may assume µ1 ≤ µ2. Then, we denote µ∗ as the first eigenvalue
of the eigenvalue problem (−∆, H1

0 (Ω)) and assume

(AN) A is real symmetric matrix and µ2 < µ∗.

Here, we only consider (time) global classical solutions with respect to (P). Furthermore,
we can see that the growth condition of f and g is controlled by (N2) whereas (AR) is the
so called Ambrosetti-Rabinowitz condition. We also put a remark here that the assumption
p ∈ [2 + 2

N , 2
∗) is crucial for scaling invariance and to preserve subcritical nonlinearity.

Next, we would like to clarify the definition of L∞-global bound for our problem as follows.

Definition 1.1. Let (u, v) be a global classical solution of (P). (u, v) is said to have an L∞-
global bound (time global bound) provided that

sup
t∈[0,∞)

(‖u(t)‖∞ + ‖v(t)‖∞) <∞.

2 Main result

Our goal is to establish the existence of L∞-global bounds (time global bounds) of (u, v) which
satisfies (P).

Theorem 2.1 (Main Theorem). Assume (u, v) as the global classical solution of (P). Then,
(u, v) has an L∞-global bound.

3 Preliminaries

In this section, we prepare some basic tools necessary to obtain our main result. We mainly
use the inherent properties of energy functionals related to (P) and scaling invariance property.
First, we need to define the energy functionals related to (P) as follows:

I[u, v] :=
1

2
‖∇u‖22 +

1

2
‖∇v‖22 −

1

2

∫
Ω

(u, v)A(u, v)Tdx−
∫

Ω
F (u, v)dx (I1)

and

J [u, v] := ‖∇u‖22 + ‖∇v‖22 −
∫

Ω
(u, v)A(u, v)Tdx−

∫
Ω

(uf(u, v) + vg(u, v))dx (J1)

for any (u, v) ∈ H1
0 (Ω)×H1

0 (Ω). For convenience, we will denote H1
0 (Ω)×H1

0 (Ω) as H.
Next, we consider the following energy equalities.

Lemma 3.1 (Energy equalities). We have the following energy equalities.

d

dt
I[u(t), v(t)] = −(‖∂tu(t)‖22 + ‖∂tv(t)‖22) (I2)

and
1

2

d

dt
(‖u(t)‖22 + ‖v(t)‖22) = −J [u(t), v(t)]. (J2)



Next, we observe that the energy functional I is nonnegative by using concavity argument
(see e.g. [16, pp.373, Theorem I]).

Proposition 3.2 (Nonnegativity of energy functional). Let (u, v) be a global classical solution
of (P). Then, we have

I[u(t), v(t)] ≥ 0 for any t ∈ [0,∞). (4)

Corollary 3.3. I[u(t), v(t)]→ L as t→∞ for some L ≥ 0.

By (I2) and Proposition 3.2, I is non-increasing and bounded from below. Therefore, Corollary
3.3 holds true. Next, we will prove some basic results related to time sequence along global
solutions. Let (tn)n∈N ⊂ [0,∞) with tn → ∞ as n → ∞. Here, we define the following two
conditions for our energy functional I:

(I-L) I[u(tn), v(tn)]→ L as n→∞.

(I-FD) (dI)u(tn),v(tn) → 0 as n→∞ in H∗ where (dI)u(tn),v(tn) is the Fréchet derivative of I at
(u(tn), v(tn)) in H and H∗ is the dual space of H.

We proceed to prove the following proposition.

Proposition 3.4 (Compactness of a certain type of time sequence in H). Assume that (u, v) is
a global solution of (P). Then, for any time sequence (tn)n∈N ⊂ [0,∞) with tn →∞ as n→∞,
if I satisfies (I-L) and (I-FD), we have ((un, vn))n∈N is compact in H.

This proposition is essential to show that our global solution is uniformly bounded in H. Next,
we proceed to clarify the scaling invariance. Let λ > 0, x∗ ∈ RN , t∗ ∈ [0,∞), and define the
following variable transformations

y := λ(x− x∗),
s := λ2(t− t∗),
ũλ(y, s) := λ

−2
p−2u(x, t),

ṽλ(y, s) := λ
−2
p−2 v(x, t).

(5)

Then, by using (P) and (5), we will obtain{
∂sũλ = ∆ũλ + λ−2(a1ũλ + bṽλ) + λ

−2
p−2
−2
f(λ

2
p−2 ũλ, λ

2
p−2 ṽλ),

∂sṽλ = ∆ṽλ + λ−2(bũλ + a2ṽλ) + λ
−2
p−2
−2
g(λ

2
p−2 ũλ, λ

2
p−2 ṽλ).

(P1)

Next, we set p0 := N
2 (p− 2) and we will have the following scaling invariance.

Lemma 3.5. (Scaling invariance) The Lp0-norm of ũ and ṽ are invariant under (5); i.e.,

‖u(t)‖p0 = ‖ũλ(s)‖p0,Ωλ and ‖v(t)‖p0 = ‖ṽλ(s)‖p0,Ωλ for any t ∈ [0,∞).

The proof of this lemma is rather similar to the proof of Lemma 3.3 (b) in [13]. Finally, we will
show the following proposition.

Proposition 3.6 (Convergence in Hölder space). Assume (wn)n∈N is uniformly bounded in

C
0,α′;0,α′/2
loc (RN × [−1, 0])) for any α′ ∈ (0, 1). Then, we have

wn → w in C
0,α′;0,α′/2
loc (RN × [−1, 0]) as n→∞ (6)

up to a subsequence (which is denoted by the same notation).



4 Proof of main result

4.1 Compactness of orbit in Lq(Ω)× Lq(Ω)

In this subsection, we begin by showing that our global solution for Problem (P) is uniformly
bounded in H. This leads us to the following proposition.

Proposition 4.1 (Boundedness in H). Let (u, v) be a global solution of (P). Then, it is
uniformly bounded in H.

The boundedness of global solution in H will be crucial for the proof of our main theorem
since it enables us to use Rellich-Kondrachov Theorem. Then, by recalling Proposition 4.1, we
deduce the weak convergence (up to a subsequence) of orbit in H. Next, we apply Rellich-
Kondrachov Theorem to deduce that for any time sequence (tn)n∈N ⊂ [0,∞) with tn → ∞ as
n → ∞, there exists a subsequence (still denoted by the same notation) and (u∗, v∗) ∈ H such
that

(un, vn)→ (u∗, v∗) in Lq(Ω)× Lq(Ω) as n→∞ (7)

for any q ∈ [1, 2∗).
The compactness of our global solution in Lq(Ω)× Lq(Ω) space is crucial to prove Theorem

2.1. Now, we are ready to prove our main result.

4.2 Proof of Theorem 2.1

We will prove this theorem by using contradiction argument which is similar to the one given in
[13, pp.1030, Proof of Proposition 4.2] for single equation case. However, we discuss system of
PDEs instead of a single equation here which is not covered in [13]. Assume the conclusion
does not hold, then we have a time sequence (t′n)n∈N such that t′n → ∞ as n → ∞ and
‖u(t′n)‖∞ + ‖v(t′n)‖∞ →∞ as n→∞. Without loss of generality, we may assume

‖u(t′n)‖∞ ≥ ‖v(t′n)‖∞ and set M(t′n) := ‖u(t′n)‖∞ for any n ∈ N.

However, this means that we can guarantee the existence of time sequence (by taking the sub-
sequence of (t′n)n∈N if necessary) (tn)n∈N ⊂ [0,∞) which satisfies

tn →∞ as n→∞,
M(tn)→∞ as n→∞,
sup

t∈[0,tn]
M(t) = M(tn) for any n ∈ N.

(8)

Moreover, by continuity of (u, v), we can find (xn)n∈N (and take a subsequence if necessary)
and x0 ∈ Ω such that {

xn →∞ as n→∞,
1
2M(tn) ≤ |u(xn, tn)| for any n ∈ N.

(9)

Let us take λ
2
p−2 = M(tn) =: λ

2
p−2
n , x∗ = xn, and t∗ = tn to apply (5) to our original problem

(P). Then, we will have the following equation: ∂sũn = ∆ũn + λ−2
n (a1ũn + bṽn) + λ

−2
p−2
−2

n f(λ
2
p−2
n ũn, λ

2
p−2
n ṽn),

∂sṽn = ∆ṽn + λ−2
n (bũn + a2ṽn) + λ

−2
p−2
−2

n g(λ
2
p−2
n ũn, λ

2
p−2
n ṽn).

(Pwn)



Notice that by using (8) and (9), we also have{
1
2 ≤ ũn(0y, 0s) for any n ∈ N,
‖ṽn‖L∞(−2,0;L∞) ≤ ‖ũn‖L∞(−2,0;L∞) ≤ 1 for any n ∈ N (sufficiently large).

(10)

Furthermore, we will have two cases as follows:

(Case 1) lim sup
n→∞

λndist(xn, ∂Ω) =∞.

(Case 2) lim sup
n→∞

λndist(xn, ∂Ω) <∞.

For simplicity, we denote γ = lim sup
n→∞

λndist(xn, ∂Ω) here and proceed to (Case 1) first.

We begin by assuming γ = ∞ and may assume further that λn(Ω − xn) → RN as n → ∞
and x0 ∈ Ω. Then, we apply Lp-estimate for parabolic operators (see e.g. [15, pp. 172, Theorem
7.13]) to deduce that (ũn)n∈N and (ṽn)n∈N are bounded sequences in W 2,1

q,loc(R
N × (−1, 0)) for

sufficiently large q > 1 by using (10). Thus, (ũn)n∈N and (ṽn)n∈N are also bounded sequences in

C
0,α′;0,α′/2
loc (RN × [−1, 0])) by recalling Sobolev embedding W 2,1

q,loc ↪→ C
0,α′;0,α′/2
loc (see e.g. [17, pp.

80, Lemma 3.3]) for any α′ ∈ (0, 1). Next, we will show that the following lemma holds true.

Lemma 4.2. Let ((un, vn))n∈N be a solution of (Pwn). Then, we have

‖∂sũn‖2L2(−1,0;L2) + ‖∂sṽn‖2L2(−1,0;L2) → 0 as n→∞ (11)

Then, we can take (wn)n∈N as (ũn)n∈N or (ṽn)n∈N in Proposition 3.6 to deduce that

ũn → ũ and ṽn → ṽ in C
0,α′;0,α′/2
loc (RN × [−1, 0]) as n→∞ (12)

up to a subsequence. Moreover, by using (11), we deduce the following corollary.

Corollary 4.3. Assume that (11) holds true. Then, we have∫ 0

−1

∫
RN

ũ∂sϕdyds = 0 and

∫ 0

−1

∫
RN

ṽ∂sϕdyds = 0 (13)

for any test function ϕ ∈ C∞0 (RN × [−1, 0]).

In other words, the weak derivative of ũ and ṽ with respect to s are equal to zero. Thus, we
conclude that ũ and ṽ are independent of s since their weak derivatives are zero and they are
locally uniformly continuous functions.

Next, by using (10), we can find r > 0 small enough so that

‖ũ‖Lp0 (By(0,r)) > 0. (14)

Similarly, we let ε > 0 and define

Bx(x0; ε) := {x ∈ RN | |x− x0| < ε}

Bx(xn;
r

λn
) :=

{
x ∈ RN | |x− xn| <

r

λn

}
.

Note that for ε small enough, Bx(x0; ε) ⊂ Ω which is well defined and Bx(xn; r
λn

) ⊂ Bx(x0; ε)
for sufficiently large n. Thus, by using Proposition 3.6 (uniform convergence) and Lemma 3.5
(scaling invariance), we see that

‖ũ‖Lp0 (By(0;r)) = ‖ũn(0s)‖Lp0 (By(0;r)) + o(1)

= ‖un‖Lp0 (Bx(xn; r
λn

)) + o(1).



Moreover, recall that p0 ∈ [1, 2∗) since p ∈ [2 + 2
N , 2

∗). Hence, we can use (7) to see that

‖ũ‖Lp0 (By(0;r)) ≤ ‖un‖Lp0 (Bx(x0;ε)) + o(1)

= ‖u∗‖Lp0 (Bx(x0;ε)) → 0 as ε ↓ 0

which is impossible since (14) holds true. Therefore, this is a contradiction.

Now, we asssume that γ <∞ with x0 ∈ ∂Ω and λn(Ω−xn)→ RN+ (using coordinate rotation
if necessary so that xN0 < xN for any x ∈ Ω) as n→∞. For clarity, here we define

RN+ := {y ∈ RN | yN > −γ}.

Next, we simply repeat the procedure as before to see that (ũn)n∈N and (ṽn)n∈N are uniformly
bounded in W 2,1

q,q;loc(R
N
+×(−1, 0)) for any q > 1 sufficiently large. Hence, we can deduce that they

are uniformly bounded in C
0,α′;0,α′/2
loc (RN+ × [−1, 0]). Since (P) satisfies zero Dirichlet boundary

condition, we can deduce that γ > 0 (see e.g. [7, pp.477, Case (ii)] and [11, pp. 418, Case 2
(iii)]). Then, we only need to take r = γ

2 to deduce a contradiction by following similar steps as
in (Case 1). Thus, we finish the proof for (Case 2) and complete the proof of Theorem 2.1.
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