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Abstract

The concept of Poisson algebras is one of the most important concepts in mathematics that make
a link between commutative and non-commutative algebra. Poisson algebras can be defined as Lie
algebras that satisfy the Leibniz rule. Our research is about classifying a large Poisson algebra class
A = K[t][x, y], that is a Poisson polynomial algebra in two variables x and y with coefficients on
the Poisson polynomial algebra K[t], where K is an algebraic closure field with zero characteristic.
There are three main cases of the classification of the Poisson algebra class A. We are interested in
the Poisson spectrum of A, minimal and maximal Poisson ideals of A. I presented the first case of
the classification in the poster called ’Poisson Algebras I’ and in this poster, I will present a part of
the second case of the classification and its Poisson spectrum.

1. Introduction

A commutative algebra D over a field K is called a Poisson algebra if there exists a bilinear product
{·, ·} : D ×D → D, called a Poisson bracket, such that

1. {a, b} = −{b, a} for all a, b ∈ D (anti-commutative),

2. {a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0 for all a, b, c ∈ D (Jacobi identity), and

3. {ab, c} = a{b, c}+ {a, c}b for all a, b, c ∈ D (Leibniz rule).

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a Poisson ideal of D if
{D, I} ⊆ I . Moreover, a Poisson ideal P of the algebra D is a Poisson prime ideal of D provided

IJ ⊆ P ⇒ I ⊆ P, or J ⊆ P

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the Poisson
spectrum of D and is denoted by PSpec(D).

Definition. Let D be a Poisson algebra over a field K. A K-linear map α : D → D is a Poisson
derivation of D if α is a K-derivation of D and

α({a, b}) = {α(a), b}+ {a, α(b)} for all a, b ∈ D.

A set of all Poisson derivations of D is denoted by PDerK(D).

2. How do we get our Poisson algebra class A?

Lemma. [Oh3] Let D be a Poisson algebra over a field K, c ∈ K, u ∈ D and α, β ∈ PDerK(D) such
that

αβ = βα and {d, u} = (α+ β)(d)u for all d ∈ D. (1)



Then the polynomial ring D[x, y] becomes a Poisson algebra with Poisson bracket

{d, y} = α(d)y, {d, x} = β(d)x and {y, x} = cyx+ u for all d ∈ D. (2)

The Poisson algebra D[x, y] with Poisson bracket (2) is denoted by (D;α, β, c, u).

3. How do we classify A?

We aim to classify all the Poisson algebra’s A = (K[t];α, β, c, u), where K is an algebraically closed
field of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson
bracket, i.e. {a, b} = 0 for all a, b ∈ K[t]). Notice that, it follows from the second part of equality (1)
that

0 = {d, u} = (α+ β)(d)u for all d ∈ K[t],

which implies that precisely one of the three cases holds:

(Case I: α+ β = 0 and u = 0), (Case II: α+ β = 0 and u 6= 0) or (Case III: α+ β 6= 0 and u = 0) .

4. What have we done so far?

The next lemma states that in order to complete the classification of Poisson algebra classA. This lemma
describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and α, β ∈
PDerK= DerK(K[t])=K[t]∂t such that α = f∂t and β = g∂t, where f, g ∈ K[t]\{0}, ∂t = d/dt
then

αβ = βα if and only if g =
1

λ
f for some λ ∈ K× := K\{0}. (3)

By using the previous lemma, we can assume that α = f∂t, β = 
λf∂t, c ∈ K, u ∈ K[t], where

f ∈ K[t] and λ ∈ K×. Then we have the class of Poisson algebras A = K[t][x, y] = (K[t];α =
f∂t, β = 1

λf∂t, c, u) with Poisson bracket defined by the rule:

{t, y} = fy, {t, x} = 1

λ
fx and {y, x} = cyx+ u. (4)

The first case of the classification

The first case (Case I) of the Poisson algebra class A has two main subcases: Case I.1 and Case I.2. The
results were indicated in these six subcases A2,A3,A6,A7,A9 and A10. Also, we presented some of
their Poisson spectrum in diagrams in the poster called ’Poisson Algebras I’, see the diagram 1.



Diagram 1: The ’Poisson Algebras I’ poster

The first part of second case (Case II) of the classification is presented in this poster and the next diagram
shows the second case structure.
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Diagram 2: Structure of the second case of Poisson algebra class A

Case II: α + β = f∂t +
1
λ
f∂t = (1 + 1

λ
)f∂t = 0 and u 6= 0

Case II.1:
If f = 0, i.e. α = β = 0 and u ∈ K[t]\{0} then we have the Poisson algebra A11 = (K[t]; 0, 0, c, u)



with Poisson bracket
{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ u. (5)

There are two subcases: c = 0 and c ∈ K×.

Case II.1.1: If c = 0 then we have the Poisson algebra A12 = (K[t]; 0, 0, 0, u) with Poisson
bracket

{t, y} = 0, {t, x} = 0 and {y, x} = u. (6)

There are two subcases: u ∈ K[t]\K and u ∈ K×.

Case II.1.1.1:
If u ∈ K[t]\K and Ru = {λ1, . . . , λs} is the set of distinct roots of u then A13 = (K[t]; 0, 0, 0, u) is a
Poisson algebra with Poisson bracket (6), we found PSpec(A14), see diagram 3.
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Diagram 3: The containment information between Poisson prime ideals of A13

Case II.1.1.2:
If u = a ∈ K×, i.e. Ra = ∅ then we have the Poisson algebra A14 = (K[t]; 0, 0, 0, a) with Poisson
bracket

{t, y} = 0, {t, x} = 0 and {y, x} = a. (7)

The PSpec(A14) = {p⊗K[x, y] | p ∈ Spec(K[t])} ⊆ PSpec(A13).

Case II.1.2: If c ∈ K× then we have the Poisson algebra A15 = (K[t]; 0, 0, c, u) with Poisson
bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ u := ρ. (8)

There are two subcases: u ∈ K[t]\K and u ∈ K×.

Case II.1.2.1:
If u ∈ K[t]\K and Ru = {λ1, . . . , λs} is the set of distinct roots of u then A16 = (K[t]; 0, 0, c, u) is a
Poisson algebra with Poisson bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ u. (9)

It follows that the element ρ = cyx + u is an irreducible polynomial in A16. Moreover, we found
PSpec(A16), see diagram 4
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Diagram 4: The containment information between Poisson prime ideals of A16

Case II.1.2.2:
If u = a ∈ K×, i.e. Ra = ∅ then we have the Poisson algebra A17 = (K[t]; 0, 0, c, a) with Poisson
bracket

{t, y} = 0, {t, x} = 0 and {y, x} = cyx+ a. (10)

It follows that A17 = K[t] ⊗ K[x, y] is a tensor product of the trivial Poisson algebra K[t] and the
Poisson algebra K[x, y] with {y, x} = ρ. The element ρ = cyx+ a is an irreducible polynomial inA17.
Moreover, we found PSpec(A17), see diagram 5.
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Diagram 5: The containment information between Poisson prime ideals of A17

5. Conclusion / Future research

A classification of Poisson prime ideals of A was obtained in 10 cases out of 22. We will complete the
classification of A. Then we aim to classify some simple finite dimension modules over the class A.
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