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概要

時間非整数階微分方程式は、異常拡散現象及び光音響イメージングのモデルとして認識される。

観測できるデータからソースの情報などを決めるという逆問題は、汚染源推定や非破壊検査など

応用に役立ち、有意義な問題である。本講演は、解析学理論の立場から、時間非整数階拡散・波

動方程式を考察し、Carleman 評価（一種の L2 重み付き評価）に基づき、境界における解の時

系列の観測データによるソース項の空間成分を決める逆問題の安定性評価を確立する。

1 Introduction

Let Ω be a bounded domain in Rn with smooth boundary (e.g., of C2-class). Denote Q :=

Ω × (0, T ), Σ := ∂Ω × (0, T ) with arbitrarily fixed T > 0. Throughout the article, we use the

notations ∂t for the time derivative and ∂xi , i = 1, . . . , n for the spatial derivative with respect

to the i-th component. Moreover, ∇ = (∂x1 , . . . , ∂xn) and ∆ = ∇ · ∇ =
∑n
i=1 ∂

2
xi
.

In this article, we consider the following initial-boundary value problem for the diffusion/wave

equation with time-fractional derivatives
∂Kt u+ q(x)∂αt u−∆u = F (x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ Σ,

u(x, 0) = 0, x ∈ Ω,

∂tu(x, 0) = 0, x ∈ Ω, if K = 2

(1)

where K = 1, 2, 0 < α < 1, q ∈W 1,∞(Ω) and the source F is in some suitable space which will

be fixed later. Here and henceforth, W k,p(X), k ∈ N, p ∈ N ∪ {∞} denotes the Sobolev space

on X = (0, T ) (or X = Ω) and Hk(X) = W k,2(X), k ∈ N, Lp(X) = W 0,p(X), p ∈ N ∪ {∞}.
Moreover, ∂αt denotes the Caputo fractional derivative defined by

∂αt g(t) :=
1

Γ(1− α)

∫ t

0

(t− s)−α∂sg(s)ds, t > 0.

Although there are several different uses of terminology, here in this article, we call it diffusion

equation with time-fractional derivatives for the case K = 1 while we say wave equation with

time-fractional derivatives for the case K = 2. Furthermore, we may call it time-fractional



diffusion/wave equation for a more general case

∂βt u−∆u = F (x, t)

with 0 < β ≤ 2.

1.1 Background

As we know, fractional calculus is a quite classical topic. Katugampola mentioned in his paper

[9] that the history of fractional calculus should go back to seventeenth century, when in 1695

the derivative of order 1/2 was described by Leibnitz in his letter to L’Hospital.

Within the last few decades, an abundance of anomalous processes was confirmed by experi-

ments in several different application areas including physics, engineering and biology, see e.g.,

[5], [16], [18] and the references therein. As models of such anomalous processes, time-fractional

diffusion/wave equations have drawn increasing attention in the recent years. Here we also refer

to Schumer and Benson [15], Patch and Haltmeier [13] and Szabo [17], which are closely related

to the governing equation (1) discussed in this article.

1.2 Known results

For the unique existence of solutions to initial-boundary value problems, we may refer to

e.g., Li, Liu and Yamamoto [10] and Luchko [12], while we mention e.g., [3] for the asymptotic

behavior. As for a comprehensive theoretical introduction, we can refer to the recent book [7].

Moreover, for the inverse source problems for time-fractional diffusion/wave equations, we

suggest the survey paper [11] and the references therein. As for other inverse problems, we refer

to the later chapters in the same book of [11].

In particular, one of the important approaches for solving inverse problems, especially to

derive the uniqueness and the stability estimates, is the Bukhgeim-Klibanov method [1] based

on so-called Carleman estimates which are weighted L2-estimates for the solutions to partial

differential equations with large parameter(s). As for this approach, we refer to the books [2, 6],

the survey papers [8, 19] and the references therein.

2 Main results

In this article, we investigate the inverse problems of determining the spatial varying factor in

the source term F from a single boundary measurement of the solution, both in the case K = 1

and in the case K = 2. More precisely, we consider the following inverse source problem

Inverse source problem

Let F (x, t) = R(x, t)f(x), x ∈ Ω, t ∈ (0, T ). For given q and R, let u be the solution to

the initial-boundary value problem (1). Determine spatial component f of the source by the



measured Neumann data of the solution on some suitable sub-boundary Γ over the time span

(0, T ):
∂νu|Γ×(0,T ) −→ f |Ω.

Here and henceforth, ν denotes the outward normal vector of the boundary ∂Ω and ∂νu = ∇u·ν
is the normal derivative on ∂Ω. In this article, we focus on the theoretical part of the above

inverse source problem and give some stability estimates.

2.1 Inverse source problem for K = 1

We first introduce the following notations

R1,M := {R; ∥Dγ
t R∥L∞(Q) ≤M, 0 < γ ≤ 3

2
},

U1 := {u ∈ H1(0, T ;H1
0 (Ω)∩H2(Ω)) ∩H2(0, T ;L2(Ω))}.

Here Dγ
t denotes the Riemann-Liouville fractional derivative defined by

Dγ
t g(t) :=

1

Γ(m− γ)

dm

dtm

∫ t

0

(t− s)m−γ−1g(s)ds,

where m = ⌈γ⌉, i.e., m is the smallest integer which is larger than or equal to γ.

Now we are ready to state the first result.

Theorem 2.1（Lipschitz stability for case K=1） Let α = m
k ≤ 3

4 , k ∈ N,m = 1, ..., k − 1 and

0 < t0 < T , sub-boundary Γ ⊂ ∂Ω be arbitrarily fixed. Assume that f ∈ L2(Ω) and R ∈ R1,M

satisfies
|R(·, t0)| ≥ r0 on Ω

for some constant r0 > 0. Furthermore, u ∈ U1 satisfies the initial-boundary value problem (1)

with K = 1. Then there exists a constant C > 0, depending on M , k, T and the coefficients,

such that

∥f∥L2(Ω) ≤ C
(
∥u(·, t0)∥H2(Ω) + ∥D

3
2
t (∂νu)∥L2(Γ×(0,T ))

)
.

Remark 2.1 The constant C tends to infinity as k goes to infinity. So we could not easily apply

the density of rational numbers in real numbers and it is still open whether the theorem holds

true for all real α ∈ (0, 34 ] or not.

Moreover, due to some technical reason, we need additional measurement of the solution at

t = t0. Also one could find such additional data while one considers the inverse source problem

for the diffusion equation (e.g., [19, Theorem 6.2]).

The proof is similar to [4, Theorem 5] where the authors proved a conditional stability of

Hölder type.



2.2 Inverse source problem for K = 2

We introduce the following notations

R2,M := {R; ∥R∥W 1,∞(0,T ;L∞(Ω)) ≤M},
U2 := {u ∈ H2(0, T ;L2(Ω)) ∩H1(0, T ;H1

0 (Ω)) ∩ L2(0, T ;H2(Ω))}.

Then we state the second main result.

Theorem 2.2（Lipschitz stability for case K=2） Let 0 < α ≤ 1 and T ≥ T0. Assume that f ∈
L2(Ω) and R ∈ R2,M satisfies

|R(·, 0)| ≥ r0 on Ω

for some r0 > 0. Furthermore, u ∈ U2 satisfies the initial-boundary value problem (1) with

K = 2. Then we can find some sub-boundary Γ0 ⊂ ∂Ω such that there exists constant C > 0,

depending on M , T and the coefficients, fulfilling

∥f∥L2(Ω) ≤ C∥∂t(∂νu)∥L2(Γ0×(0,T )).

Remark 2.2 In the statement of Theorem 2.2, T0 > 0 is some sufficient large number which

depends on the size and shape of Ω. This comes from the finite propagation speed while one

consider the wave equations.

Moreover, actually the sub-boundary Γ0 ⊂ ∂Ω could be characterized by the following relation

{x ∈ ∂Ω; (x− x0) · ν ≥ 0} ⊂ Γ0 (2)

where x0 ∈ Rn could be an arbitrarily fixed point satisfying x0 ̸∈ Ω.

The proof follows the idea of [2, Theorem 5.1] where the inverse source problem for the wave

equation is considered. In comparison, here we should use a key lemma to estimate the additional

time-fractional derivative.

3 Technical arguments

In this section, we propose some key arguments which are connected to our main results.

Firstly we give the key Carleman estimates for (1).

First of all, we introduce the weight function esφ with

φ(x, t) = eλψ(x,t), ψ(x, t) = d(x)− β(t− t0)
2, (x, t) ∈ Q (3)

where s, λ > 0 are large parameters and positive constants β, t0 > 0 as well as function d ∈ C2(Ω)

will be fixed in the following contexts. This is one of the well-known choices of the weight

functions in the Carleman estimates. One could find other choices in e.g., [8, 19] and the

references therein which could yield suitable weighted estimates that help one solve different

types of inverse problems.



3.1 Carleman estimate for the the case K = 1

In the case K = 1, since the highest order of time derivative is one, we could guess that the

estimate is similar to the counterpart of diffusion equation (see e.g., [19]).

Hence in (3) we assume
β > 0, 0 < t0 < T (4)

and d ∈ C2(Ω) satisfies

d > 0 in Ω, |∇d| > 0 on Ω, d = 0 on ∂Ω \ Γ. (5)

where Γ ⊂ ∂Ω is a given relatively open sub-boundary. Then we have

Theorem 3.1（Carleman estimate for case K=1） Let φ satisfy (3) with (4), (5), and α = m
k ∈

(0, 34 ] be a rational number. Suppose D
j
k
t F ∈ L2(Q), j = 0, ..., k − 1. Then for an arbitrarily

fixed relatively open sub-boundary Γ ⊂ ∂Ω, there exists a constant C > 0, independent of s,

such that∫
Q

2k−1∑
j=0

s−
4
k j+3|D

j
k
t u|2e2sφdxdt ≤ C

∫
Q

k−1∑
j=0

|D
j
k
t F |2e2sφdxdt+ CeCs

∫
Γ×(0,T )

|∂t(∂νu)|2dSdt

for all sufficiently large s > 0 and all u smooth enough satisfying (1) with K = 1 and u(·, 0) =
u(·, T ) = 0 in Ω.

The proof is a combination of the well-known Carleman estimate for diffusion equation and the

technical argument in the subsection 3.3.

3.2 Carleman estimate for the the case K = 2

In the case K = 2, since the highest order of time derivative is two, it is natural to guess the

estimate is similar to the counterpart of wave equation (see e.g., [2]).

Hence in (3) we assume
0 < β < 1, t0 = 0 (6)

and d ∈ C2(Ω) satisfies
d = |x− x0|2 (7)

where x0 ∈ Rn is an arbitrarily fixed point satisfying x0 ̸∈ Ω. Then we have

Theorem 3.2（Carleman estimate for case K=2） Let φ satisfy (3) with (6), (7), and 0 < α ≤ 1.

Suppose F ∈ L2(Q). Then we can find sub-boundary Γ0 ⊂ ∂Ω fulfilling (2), such that there

exists a constant C > 0 satisfying∫
Q

(s|∂tu|2 + s|∇u|2 + s3|u|2)e2sφdxdt ≤ C

∫
Q

|F |2e2sφdxdt+ CeCs
∫
Γ0×(0,T )

|∂νu|2dSdt



for all sufficiently large s > 0 and all u smooth enough satisfying (1) with K = 2 and u(·, 0) =
u(·, T ) = 0 in Ω.

The proof is a combination of the well-known Carleman estimate for wave equation and the

technical argument in the subsection 3.4.

3.3 Reduction of governing equation to a parabolic system in the case K = 1

Here we show the idea how to deal with the term ∂αt u of time-fractional derivative in the case

K = 1. Recall the following facts on the fractional calculus:

(i) ∂mt g = Dm
t g, m = 1, 2, . . .;

(ii) Dα
t (∂tg) = ∂t(D

α
t g) = Dα+1

t g, α > 0 provided that g(0) = 0;

(iii) Dα
t (D

β
t g) = Dα+β

t g, m− 1 < α < m, m = 1, 2, . . ., 0 < β < 1 provided that g(0) = 0;

(iv) Dα
t g = ∂αt g, 0 < α < 1 provided that g(0) = 0.

The above facts can be justified by formal calculations and we refer to Podlubny [14] for

example.

In order to clarify the essence of the idea, here we consider a special case α = 2
3 . For the

general rational number α, we refer to [4, Appendix]. According to (iv), one can rewrite the

first equation of (1) by

∂tu−∆u = F − qD
2
3
t u. (8)

Then we apply Riemann-Liouville fractional derivatives D
1
3
t and D

2
3
t respectively to (8) and

obtain

∂t(D
1
3
t u)−∆(D

1
3
t u) = D

1
3
t F − qD1

t u, (9)

∂t(D
2
3
t u)−∆(D

2
3
t u) = D

2
3
t F − qD

4
3
t u, (10)

Here we used the facts (ii) and (iii). Let v = D
1
3
t u and w = D

2
3
t u. Hence again by (ii), we derive

from (8)–(10) a coupled parabolic system, that is,
∂tu−∆u = F − qw,

∂tv −∆v = D
1
3
t F − q∂tu,

∂tw −∆w = D
2
3
t F − q∂tv.

Thus, Theorem 3.1 can be derived by employing Carleman estimate for parabolic equations ([19,

Theorem 3.2]) with respect to u, v and w respectively.

3.4 Estimation of time-fractional derivative in the case K = 2

We deal with the term ∂αt u of time-fractional derivative in the case K = 2. Although we could

use similar idea as the above subsection to construct a coupled system of hyperbolic equations,

we propose another way to overcome this term.



We should mention that the following argument works because the weight function for the

case K = 2 could be an decreasing function with respect to t in the interval [0, T ] (see (3), (6)

and (7)) and the fractional order α is sufficiently small compared to K, i.e., α ≤ K − 1.

In fact, we have the following lemma.

Lemma 3.1 Let φ satisfy (3) with (6) and (7). Then there exists a constant C = C(T ) > 0,

independent of s, such that∫
Q

|∂αt u|2e2sφdxdt ≤ C

∫
Q

|∂tu|2e2sφdxdt.

Proof. This is a direct calculation according to the definition of time-fractional derivative. By

noting that φ is decreasing in the interval (0, T ) and thus e2sφ is decreasing in the same interval,

we obtain∫
Q

|∂αt u|2e2sφdxdt =
∫
Q

∣∣∣∣ esφ(x,t)Γ(1− α)

∫ t

0

(t− τ)−α∂τu(x, τ)dτ

∣∣∣∣2 dxdt
≤

∫
Q

1

(Γ(1− α))2

∣∣∣∣∫ t

0

(t− τ)−α|∂τu(x, τ)|esφ(x,t)dτ
∣∣∣∣2 dxdt

≤
∫
Q

1

(Γ(1− α))2

∣∣∣∣∫ t

0

(t− τ)−α|∂τu(x, τ)|esφ(x,τ)dτ
∣∣∣∣2 dxdt

≤
∫
Q

(
T 1−α

Γ(2− α)

)2 ∣∣∣∂tu(x, t)esφ(x,t)∣∣∣2 dxdt
≤ C

∫
Q

∣∣∣∂tu(x, t)esφ(x,t)∣∣∣2 dxdt.
Here we used Young’s convolution inequality in the last line.

Thus, Theorem 3.2 can be derived by employing Carleman estimate for hyperbolic equations

([2, Theorem 4.2]) and Lemma 3.1 above. Actually from Lemma 3.1, we will have the additional

term C∥esφ(∂tu)∥2L2(Q) on the right-hand side of the estimate. Whereas, on the left-hand side

(see [2, Theorem 4.2]), we have s∥esφ(∂tu)∥2L2(Q) and thus we can absorb the additional into the

left-hand side by taking the parameter s > 0 sufficiently large.

4 Concluding remarks

In this article, we investigate the inverse problems of determining the spatial component of

the source for the diffusion/wave equation (1) with time-fractional derivative. Our main results

are the theoretical Lipschitz stability estimates for both the case K = 1 and the case K = 2.

The proofs of the stability estimates are based on the BK method by using Carleman estimates.

The key point is to establish suitable Carleman estimates for (1) where we meet the difficulty

of dealing with the additional fractional derivatives. This can be overcome by applying some

technical arguments that we introduced in Section 3.



It is clear from the proofs that the governing equation (1) could be generalized to the following

one

∂Kt u+

N∑
j=1

qj(x)∂
αj

t u+

n∑
i,j=1

∂xi(aij(x)∂xju) +

n∑
j=1

bj(x)∂xju+ c(x)u = F (x, t)

where A = (aij) is a symmetric strictly elliptic operator, i.e., aij = aji, 1 ≤ i, j ≤ n satisfies

a0|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ a1|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn

for some constants a0, a1 > 0 and the coefficients aij , qj , bj , c, 1 ≤ i, j ≤ n are smooth enough.

However, with the approach by Carleman estimates, we could not prove the stability for all

0 < α < K. The inverse source problem still remains open for

• α ̸∈ Q and 3/4 < α < 1 in the case K = 1 and

• 1 < α < 2 in the case K = 2.

参考文献

[1] A. L. Bukhgeim, M. V. Klibanov, Global uniqueness of a class of multidimensional inverse

problems, Soviet Mathematics Doklady 24 (1981): 244-247.

[2] M. Bellassoued, M. Yamamoto, Carleman Estimates and Applications to Inverse Problems

for Hyperbolic Systems, Springer-Japan, Tokyo, 2017.

[3] X. Cheng, Z. Li, M. Yamamoto, Asymptotic behavior of solutions to space-time fractional

diffusion equations, Mathematical Methods in the Applied Sciences 40 (2017): 1019-1031.

[4] X. Huang, Z. Li, M. Yamamoto, Carleman estimates for the time-fractional advection-

diffusion equations and applications, Inverse Problems 35 (2019): 045003.

[5] R. Hilfer, Fractional Time Evolution, in Applications of Fractional Calculus in Physics (R.

Hilfer ed.), World Science Publishing, River Edge, NJ, 2000, pp. 87-130.

[6] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, Berlin, 1998.

[7] A. Kubica, K. Ryszewska, M. Yamamoto, Time-Fractional Differential Equations: A The-

oretical Introduction, SpringerBriefs in Mathematics, Springer, Singapore, 2020.

[8] M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods

for coefficient inverse problems, J. Inverse Ill-Posed Probl. 21 (2013): 477-560.

[9] Udita N. Katugampola, A New Approach to Generalized Fractional Derivatives, Bulletin

of Mathematical Analysis and Applications 6 (2014): 1-15.

[10] Z. Li, Y. Liu, M. Yamamoto, Initial-boundary value problems for multi-term time-fractional

diffusion equations with positive constant coefficients, Applied Mathematics and Compu-

tation 257 (2015): 381-397.

[11] Y. Liu, Z. Li, M. Yamamoto, Inverse problems of determining sources of the fractional

partial differential equations, in Handbook of Fractional Calculus with Applications, Vol.



2 Fractional Differential Equations (A. Kochubei, Y. Luchko eds.), De Gruyter, 2019, pp.

411-430.

[12] Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation

of distributed order, Fract. Calc. Appl. Anal. 12 (2009): 409-422.

[13] S. K. Patch, M. Haltmeier, Thermoacoustic Tomography - Ultrasound Attenuation Arti-

facts, IEEE Nuclear Science Symposium Conference Record 4 (2006): 2604-2606.

[14] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[15] R. Schumer, D.A. Benson, Fractal mobile/immobile solute transport, Water Resources Re-

search 39 (2003): 1296. doi:10.1029/2003WR002141

[16] I. Sokolov, J. Klafter, A. Blumen, Fractional kinetics, Phys. Today 55 (2002): 48-54.

[17] T. Szabo, Time domain wave equations for lossy media obeying a frequency power law, The

Journal of the Acoustical Society of America 96 (1994): 491-500.

[18] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers I: Background and

Theory, Nonlinear Phys. Sci., Springer, Heidelberg, 2013.

[19] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob-

lems 25 (2009): 123013.


