BOUNDEDNESS OF COMPOSITION OPERATORS ON MORREY SPACES

NAOYA HATANO, MASAHIRO IKEDA, ISAO ISHIKAWA, AND YOSHIHIRO SAWANO

1. INTRODUCTION

In this talk, we investigate the boundedness of composition operators on Morrey spaces.

Let $L^0(\mathbb{R}^n)$ be the set of all measurable functions on \mathbb{R}^n . We provide a precise definition of the composition operators induced by a measurable map $\varphi : \mathbb{R}^n \to \mathbb{R}^n$.

Definition 1.1 (Composition operator). Let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be a measurable map, and assume that φ is nonsingular, namely, $|\varphi^{-1}(E)| = 0$ for each measurable null set E. The composition operator C_{φ} is defined by

$$C_{\varphi}f \equiv f \circ \varphi.$$

Subsequently, we employ the result obtained by Singh [2] for the boundedness of the composition operator on the Lebesgue space $L^p(\mathbb{R}^n)$. The Lebesgue space $L^p(\mathbb{R}^n)$ is the set of all measurable functions f defined on \mathbb{R}^n with the finite norm

$$||f||_{L^p} \equiv \left(\int_{\mathbb{R}^n} |f(x)|^p \,\mathrm{d}x\right)^{\frac{1}{p}}$$

Singh [2] provided the following necessary and sufficient condition for the map φ to generate a bounded mapping acting on Lebesgue spaces:

Theorem 1.2 ([2]). Let $0 . Then, the composition operator <math>C_{\varphi}$ induced by $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is bounded on the Lebesgue space $L^p(\mathbb{R}^n)$ if and only if there exists a constant $K = K(\varphi)$ such that for all measurable sets E in \mathbb{R}^n ,

$$|\varphi^{-1}(E)| \le K|E|.$$

The study is to investigate a necessary and sufficient condition on the boundedness of the composition operator C_{φ} on Morrey spaces.

Let $\chi_A : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ be an indicator function for a subset $A \subset \mathbb{R}^n$, which is defined as $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$, otherwise.

Now, we recall the definition of Morrey spaces on \mathbb{R}^n .

Definition 1.3 (Morrey space). Let $0 < q \leq p < \infty$. The Morrey space $\mathcal{M}_q^p(\mathbb{R}^n)$ is a quasi-Banach space defined by

$$\mathcal{M}^p_q(\mathbb{R}^n) \equiv \{ f \in L^0(\mathbb{R}^n) : \|f\|_{\mathcal{M}^p_q} < \infty \},\$$

endowed with the quasi-norm

$$||f||_{\mathcal{M}_{q}^{p}} \equiv \sup_{Q \in \mathcal{Q}} |Q|^{\frac{1}{p} - \frac{1}{q}} ||f\chi_{Q}||_{L^{q}},$$

where \mathcal{Q} denotes the family of all cubes parallel to the coordinate axis in \mathbb{R}^n .

Definition 1.4. $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is said to be **Lipschitz** if there exists $L \ge 1$ such that for all $x, \tilde{x} \in \mathbb{R}^n$,

$$|\varphi(x) - \varphi(\tilde{x})| \le L|x - \tilde{x}|.$$

Definition 1.5. $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is said to be **bi-Lipschitz** if there exists $L \ge 1$ such that for all $x, \tilde{x} \in \mathbb{R}^n$,

$$L^{-1}|x - \tilde{x}| \le |\varphi(x) - \varphi(\tilde{x})| \le L|x - \tilde{x}|.$$

We now state the main results of the present paper. The following theorem provides a sufficient condition on the boundedness of the composition operator C_{φ} on the Morrey space $\mathcal{M}^p_a(\mathbb{R}^n)$.

Theorem 1.6 ([1]). Let $0 < q \leq p < \infty$. Then, the composition operator C_{φ} induced by $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is bounded on the Morrey space $\mathcal{M}^p_q(\mathbb{R}^n)$, if φ is a Lipschitz map that satisfies the volume estimate

$$|\varphi^{-1}(E)| \le K|E|,$$

for all measurable sets E in \mathbb{R}^n and some constant K independent of E.

Conversely, as stated in the following theorem, if $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ is a diffeomorphism, then the $\mathcal{M}^p_q(\mathbb{R}^n)$ -boundedness of the composition operators C_{φ} and $C_{\varphi^{-1}}$ indicates that φ is bi-Lipschitz. Note that any bi-Lipschitz mapping satisfies the assumption of Theorem 1.6.

Theorem 1.7 ([1]). Let $n \in \mathbb{N}$, and $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be a diffeomorphism in the sense that φ and its inverse φ^{-1} are differentiable. Suppose $0 < q < p < \infty$, or q = pand n = 1. If the composition operators C_{φ} and $C_{\varphi^{-1}}$ induced by maps φ and φ^{-1} , respectively, are bounded on $\mathcal{M}_q^p(\mathbb{R}^n)$, then φ is bi-Lipschitz.

References

- N. Hatano, M. Ikeda, I. Ishikawa and Y. Sawano, Boundedness of composition operators on Morrey spaces and weak Morrey spaces, arXiv:2008.12464. [2]
- [2] R. K. Singh, Composition operators induced by rational functions, Proc. Amer. Math. Soc. 59 (1976), no. 2, 329–333. [1]