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1. Introduction

In this talk, we investigate the boundedness of composition operators on Morrey
spaces.

Let L0(Rn) be the set of all measurable functions on Rn. We provide a precise
definition of the composition operators induced by a measurable map φ : Rn → Rn.

Definition 1.1 (Composition operator). Let φ : Rn → Rn be a measurable map,
and assume that φ is nonsingular, namely, |φ−1(E)| = 0 for each measurable null
set E. The composition operator Cφ is defined by

Cφf ≡ f ◦ φ.

Subsequently, we employ the result obtained by Singh [2] for the boundedness
of the composition operator on the Lebesgue space Lp(Rn). The Lebesgue space
Lp(Rn) is the set of all measurable functions f defined on Rn with the finite norm

∥f∥Lp ≡
(ˆ

Rn

|f(x)|p dx
) 1

p

.

Singh [2] provided the following necessary and sufficient condition for the map
φ to generate a bounded mapping acting on Lebesgue spaces:

Theorem 1.2 ([2]). Let 0 < p < ∞. Then, the composition operator Cφ induced
by φ : Rn → Rn is bounded on the Lebesgue space Lp(Rn) if and only if there exists
a constant K = K(φ) such that for all measurable sets E in Rn,

|φ−1(E)| ≤ K|E|.

The study is to investigate a necessary and sufficient condition on the bounded-
ness of the composition operator Cφ on Morrey spaces.

Let χA : Rn → R≥0 be an indicator function for a subset A ⊂ Rn, which is
defined as χA(x) = 1 if x ∈ A and χA(x) = 0, otherwise.

Now, we recall the definition of Morrey spaces on Rn.

Definition 1.3 (Morrey space). Let 0 < q ≤ p < ∞. The Morrey space Mp
q(Rn)

is a quasi-Banach space defined by

Mp
q(Rn) ≡ {f ∈ L0(Rn) : ∥f∥Mp

q
< ∞},

endowed with the quasi-norm

∥f∥Mp
q
≡ sup

Q∈Q
|Q|

1
p−

1
q ∥fχQ∥Lq ,

where Q denotes the family of all cubes parallel to the coordinate axis in Rn.
1



2 NAOYA HATANO, MASAHIRO IKEDA, ISAO ISHIKAWA, AND YOSHIHIRO SAWANO

Definition 1.4. φ : Rn → Rn is said to be Lipschitz if there exists L ≥ 1 such
that for all x, x̃ ∈ Rn,

|φ(x)− φ(x̃)| ≤ L|x− x̃|.

Definition 1.5. φ : Rn → Rn is said to be bi-Lipschitz if there exists L ≥ 1 such
that for all x, x̃ ∈ Rn,

L−1|x− x̃| ≤ |φ(x)− φ(x̃)| ≤ L|x− x̃|.

We now state the main results of the present paper. The following theorem
provides a sufficient condition on the boundedness of the composition operator Cφ

on the Morrey space Mp
q(Rn).

Theorem 1.6 ([1]). Let 0 < q ≤ p < ∞. Then, the composition operator Cφ

induced by φ : Rn → Rn is bounded on the Morrey space Mp
q(Rn), if φ is a

Lipschitz map that satisfies the volume estimate

|φ−1(E)| ≤ K|E|,
for all measurable sets E in Rn and some constant K independent of E.

Conversely, as stated in the following theorem, if φ : Rn → Rn is a diffeomor-
phism, then the Mp

q(Rn)-boundedness of the composition operators Cφ and Cφ−1

indicates that φ is bi-Lipschitz. Note that any bi-Lipschitz mapping satisfies the
assumption of Theorem 1.6.

Theorem 1.7 ([1]). Let n ∈ N, and φ : Rn → Rn be a diffeomorphism in the sense
that φ and its inverse φ−1 are differentiable. Suppose 0 < q < p < ∞, or q = p
and n = 1. If the composition operators Cφ and Cφ−1 induced by maps φ and φ−1,
respectively, are bounded on Mp

q(Rn), then φ is bi-Lipschitz.
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