Geometric Relations between the Bott-Virasoro Group and the Space of Equicentroaffine Curves

N.A.

Boshu Ding

1 Background

1.1 The Bott-Virasoro Group

For M a smooth manifold with metric $(-,-)$ and $c:[a, b] \rightarrow M$ a smooth curve, the energy of c is given by

$$
\begin{equation*}
\mathcal{E}(c):=\frac{1}{2} \int_{a}^{b}(\dot{c}(t), \dot{c}(t)) d t \tag{1}
\end{equation*}
$$

A variation of c is defined to be a smooth map $\tilde{c}:[a, b] \times(-\varepsilon, \varepsilon) \rightarrow M$ with $\tilde{c}(-, 0)=c$ and a curve c is called a geodesic if for every variation \tilde{c} with endpoints fixed, we have

$$
\begin{equation*}
\left.\frac{d}{d s}\right|_{s=0} \mathcal{E}(\tilde{c}(-, s))=0 \tag{2}
\end{equation*}
$$

When M is a Lie group G with inner product $\langle-,-\rangle$ on its Lie algebra g , there is a left-invariant metric (,--) on G by

$$
\left(X_{g}, Y_{g}\right):=\left\langle l_{g^{-1} *} X_{g}, l_{g^{-1} *} Y_{g}\right\rangle .
$$

where $X_{g}, Y_{g} \in T_{g} G$. Letting $A: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$ be the natural isomorphism induced from the inner product, we define a related curve of c in the dual Lie algebra $m:[a, b] \rightarrow \mathfrak{g}^{*}$ given by

$$
m(t):=A\left(l_{c(t)^{-1} *} \dot{c}(t)\right) .
$$

In this case, the condition (2) is equivalent to the so-called Euler equation:

$$
\begin{equation*}
\dot{m}(t)=-\mathrm{ad}_{A^{-1}(m(t))}^{*} m(t) . \tag{3}
\end{equation*}
$$

Now, we restrict G to the Bott-Virasoro group Vir. It is defined to be a set $\operatorname{Diff}\left(S^{1}\right) \times_{B} \mathbb{R}$, with multiplication

$$
(\varphi, a)(\psi, b)=(\varphi \circ \psi, a+b+B(\varphi, \psi))
$$

where $B: \operatorname{Diff}\left(S^{1}\right) \times \operatorname{Diff}\left(S^{1}\right) \rightarrow \mathbb{R}$ is the Bott cocycle given by

$$
B(\varphi, \psi):=\frac{1}{2} \int_{S^{1}} \log \left(\varphi^{\prime} \circ \psi\right) d \log \psi^{\prime} .
$$

The dual space of its Lie algebra $\mathfrak{v i}{\underset{ }{*}}^{*}$ is identified with the vector space $\mathfrak{X}\left(S^{1}\right)^{*} \times \mathbb{R}$, where $\mathfrak{X}\left(S^{1}\right)^{*}=\left\{u d x \otimes d x \mid u \in C^{\infty}\left(S^{1}\right)\right\}$ consists of the quadratic forms on S^{1}. Assume that $(u d x \otimes d x, a)$: $[a, b] \rightarrow \mathfrak{v i r}^{*}$ is the curved defined in (3) for the Bott-Virasoro group. Then, it is known that the Euler equation amounts to

$$
\begin{equation*}
\dot{u}=-a u^{\prime \prime \prime}-3 u u^{\prime} . \tag{4}
\end{equation*}
$$

which is nothing but the KdV equation. (See Vizman [13] for details).

1.2 The Space of Equicentroaffine Curves

On the other hand, the KdV equation can be derived in the following way. Let \mathcal{M} denote the connected component of the space of equicentroaffine curves containing the unit circle c. An element in \mathcal{M} is a plain curve $\gamma: S^{1} \rightarrow \mathbb{R}^{2}$ with $\operatorname{det}\left(\gamma, \gamma^{\prime}\right)=1$. Given $\gamma \in \mathcal{M}$, its equicentroaffine curvature $\kappa: S^{1} \rightarrow \mathbb{R}$ is determined by

$$
\gamma^{\prime \prime}+\kappa \gamma=0
$$

A tangent vector $X \in T_{\gamma} \mathcal{M}$ on \mathcal{M} is identified with a vector field along γ, expressed in the form

$$
X=-\frac{1}{2} \lambda^{\prime} \gamma+\lambda \gamma^{\prime}
$$

where $\lambda: S^{1} \rightarrow \mathbb{R}$ is some function on S^{1}. In [5], Fujioka and Kurose studied two presymplectic forms $\hat{\omega}_{0}$ and $\hat{\omega}_{1}$ on \mathcal{M}, where $\hat{\omega}_{0}$ was first created by Pinkall [11]. For $X=-\frac{1}{2} \lambda^{\prime} \gamma+\lambda \gamma^{\prime}, Y=$ $-\frac{1}{2} \mu^{\prime} \gamma+\mu \gamma^{\prime} \in T_{\gamma} \mathcal{M}, \hat{\omega}_{0}$ is defined by

$$
\hat{\omega}_{0}(X, Y):=\int_{S^{1}} \lambda \mu^{\prime} d x
$$

which we will call the Pinkall 2-form, and $\hat{\omega}_{1}$ by

$$
\hat{\omega}_{1}(X, Y):=\int_{S^{1}} \lambda\left(\frac{1}{2} \mu^{\prime \prime \prime}+2 \kappa \mu^{\prime}+\kappa^{\prime} \mu\right) d x
$$

the Fujioka-Kurose 2-form. Fujioka and Kurose also studied a Hamiltonian function H on \mathcal{M}, whose Hamiltonian vector field X_{H} with respect to $\hat{\omega}_{1}$ is given by

$$
X_{H}(\gamma)=\frac{1}{2} \kappa^{\prime} \gamma-\kappa \gamma^{\prime}
$$

where κ is the equicentroaffine curvature of γ. In terms of this vector field, let $\tilde{\gamma}: \mathbb{R} \rightarrow \mathcal{M}$ be an integral curve of X_{H}, and $\tilde{\kappa}(-, t): S^{1} \rightarrow \mathbb{R}$ the corresponding equicentroaffine curvature of $\tilde{\gamma}(t)$, which we will call the equicentroaffine curvature flow. Pinkall proved that such equicentroaffine curvature flow $\tilde{\kappa}$ must satisfy the KdV equation:

$$
\begin{equation*}
\dot{\tilde{\kappa}}=-\frac{1}{2} \tilde{\kappa}^{\prime \prime \prime}-3 \tilde{\mathcal{K}}^{\prime} \tilde{\kappa} \tag{5}
\end{equation*}
$$

It is very interesting that the KdV equation appears in such two completely different objects, the Bott-Virasoro group and the space of equicentroaffine curves. We think that there may exist some mathematical connection behind them, and this becomes the motivation for this study.

2 Main Results

Note that as the space of equicentroaffine curves, the KdV equation (4) derived from the BottVirasoro group is also associated to a 2-form - the canonical symplectic form $d \Theta$ on the cotangent bundle $G \ltimes \mathfrak{g}^{*}$. With respect to $d \Theta$, there is a Hamiltonian function E on $G \ltimes \mathfrak{g}^{*}$ such that the \mathfrak{g}^{*}-part of an integral curve (φ, ξ) of its Hamiltonian vector field X_{E} satisfies the Euler equation, i.e.,

$$
\dot{\xi}(t)=-\operatorname{ad}_{A^{-1}(\xi(t))}^{*} \xi(t) .
$$

This means that by setting G to be the Bott-Virasoro group Vir, we can obtain the KdV equation in this way. In a word, we have related the KdV equation (4) derived from the Bott-Virasoro group to a symplectic from $d \Theta$ and a Hamiltonian vector field X_{E} with Hamiltonian function E. On the other hand, we have already seen that KdV equation (5) is related to the presymplectic form $\hat{\omega}_{1}$ and the vector field X_{H} with Hamiltonian function H

$$
d H=-i_{X_{H}} \hat{\omega}_{1} .
$$

Thus, it is reasonable to ask if there are some relations between these two forms, Hamiltonian vector fields, and Hamiltonian functions. As a result, it does, and we have proved that both the Fujioka-Kurose 2 -form $\hat{\omega}_{1}$, and the Pinkall 2 -form $\hat{\omega}_{0}$ are the pullbacks of the canonical symplectic form $d \Theta$ under certain maps. Note that for any $\gamma \in \mathcal{M}$, there exists $\psi \in \operatorname{Diff}\left(S^{1}\right)$ such that

$$
\gamma=c \cdot \psi=\frac{c \circ \psi}{\sqrt{\psi^{\prime}}},
$$

where the action on the right is called Pinkall's right action. Now, we shall state the theorems:
Theorem 1. Given $\gamma \in \mathcal{M}$, let $\psi \in \operatorname{Diff}\left(S^{1}\right)$ such that $\gamma=c \cdot \psi$, and define $\sigma_{0}: \mathcal{M} \rightarrow \operatorname{Vir} \ltimes \mathfrak{w i r}^{*}$ by

$$
\sigma_{0}(\gamma):=\left(\left(\psi^{-1}, 0\right),\left(-\frac{1}{2}\left(\psi^{-1}\right)^{\prime 2} d x \otimes d x, 0\right)\right)
$$

Then, we have

$$
\sigma_{0}^{*} d \Theta=\hat{\omega}_{0}
$$

where $d \Theta$ is the canonical symplectic form on $\operatorname{Vir} \ltimes \mathfrak{v i r}^{*}$ and $\hat{\omega}_{0}$ the Pinkall 2-form on \mathcal{M}.
Theorem 2. Given $\gamma \in \mathcal{M}$, let $\psi \in \operatorname{Diff}\left(S^{1}\right)$ such that $\gamma=c \cdot \psi$ and define $\sigma_{1}: \mathcal{M} \rightarrow \operatorname{Vir} \ltimes \mathfrak{v i r}^{*}$ by

$$
\sigma_{1}(\gamma):=\left((\psi, 0),\left(-\kappa d x \otimes d x,-\frac{1}{2}\right)\right)
$$

where κ is the equicentroaffine curvature of γ. Then, we have

$$
\sigma_{1}^{*} d \Theta=\hat{\omega}_{1}
$$

where $\hat{\omega}_{1}$ is the Fujioka-Kurose 2 -form on \mathcal{M}.
Remark 3. In Theorem 1 and Theorem 2, it turns out that the $\mathfrak{v i x}^{*}$-part of σ_{0} and σ_{1} are momentum maps with respect to certain actions of Vir on \mathcal{M}. This is one of the mains results in Fujioka, Kurose and Moriyoshi [6].

By making use of σ_{1}, we can also obtain the following relation between X_{H} and X_{E}

$$
\begin{equation*}
\sigma_{1 *}\left(X_{H}(\gamma)\right)=X_{E}\left(\sigma_{1}(\gamma)\right)+X \tag{6}
\end{equation*}
$$

where $X \in T_{\sigma_{1}(\gamma)}\left(\operatorname{Vir} \ltimes \mathfrak{v i x}^{*}\right)$ is a tangent vector such that

$$
\begin{equation*}
d \Theta\left(X_{\sigma_{1}(\gamma)}, \sigma_{1 *} Z\right)=0 \tag{7}
\end{equation*}
$$

for all $Z \in T_{\gamma} \mathcal{M}$. The existence of X in (6) may keep us from getting an explicit relation between X_{H} and X_{E}. But we have proved

Theorem 4. Let $\gamma \in \mathcal{M}$ be an element in \mathcal{M}. Suppose that $X \in T_{\sigma_{1}(\gamma)}\left(G \ltimes g^{*}\right)$ is the tangent vector in (6) which satisfies (7). Then, X has the form

$$
X=(K,(0 d x \otimes d x, 0))
$$

where K represents a tangent vector over G.
Theorem 4 means that the vir* *-part of X vanishes, and this will kill the obstruction produced by X. Then, we can finally provide an explanation, or say another proof, of why the equicentroaffine curvature flow $\tilde{\kappa}$ must satisfies the KdV equation:

Corollary 5. Let $\tilde{\gamma}$ be an integral curve of X_{H}. Then, we have

$$
\dot{\tilde{\kappa}}=-\frac{1}{2} \tilde{\kappa}^{\prime \prime \prime}-3 \tilde{\kappa}^{\prime} \tilde{\kappa},
$$

where $\tilde{\kappa}$ is the equicentroaffine curvature of $\tilde{\gamma}$.

References

[1] Alekseevsky D., Grabowski J., Marmo G., Michor P. W., Poisson structures on the cotangent bundle of a Lie group or a principle bundle and their reductions, J. Math. Phys. 35, 4909-27 (1994).
[2] ArnoldV. I., Givental A. V., Symplectic geometry, In V. I. Arnold and S. P. Novikov (eds.), Dynamical Systems IV, (1985), pp. 1-136, Berlin, Springer.
[3] Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), pp. 171-199.
[4] Chou K. S., Qu C. Z., The KdV equation and motion of plane curves, J. Phys. Soc. Japan 70 (2001) 1912-1916.
[5] Fujioka A., Kurose T., Multi-Hamiltonian structures on spaces of closed equicentroaffine plane curves associated to higher KdV flows, SIGMA 10 (2014), 048, 11pp.
[6] Fujioka A., Kurose T., Moriyoshi H. In Preparation.
[7] Hasimoto H., A soliton on a vortex filament, J. Fluid Mech. 51, (1972), 477-485.
[8] Lamb G. L., Solitons and the motion of helical curves, Phys. Rev. Lett. 37 (1976), 235-237.
[9] McDuff D., Salamon D. Introduction to Symplectic Topology, Oxford University Press. (2017).
[10] Ovsienko V. Y., Khesin B. A., Korteweg-de Vrieß superequations as an Euler equation, Funct. Anal. Appl. 21 (1987), 329-331.
[11] Pinkall U., Hamiltonian flows on the space of star-shaped curves, Results Math. 27, 328-332 (1995)
[12] Roger C., Extensions centrales d'algebres et de groupes de Lie de dimension infinie, algebres de Virasoro et generalisations, Rep. Math. Phys., 35 (1995), 225-266.
[13] Vizman C., Geodesic equations on diffeomorphism groups, SIGMA 4, 030 (2008), 22 pp

