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1 Background

1.1 The Bott-Virasoro Group

For M a smooth manifold with metric (-, —) and c : [a,b] — M a smooth curve, the energy of
c is given by
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A variation of c is defined to be a smooth map ¢ : [a,b] X (-¢, &) = M with ¢(—,0) = cand a
curve c is called a geodesic if for every variation ¢ with endpoints fixed, we have
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When M is a Lie group G with inner product (—, —) on its Lie algebra g, there is a left-invariant
metric (-, —) on G by

(Xg, Yy) 1= (g1 Xg, Lot Yo).

where X, Y, € T,G. Letting A : ¢ — g* be the natural isomorphism induced from the inner
product, we define a related curve of ¢ in the dual Lie algebra m : [a, b] — ¢* given by

m(t) = A(lc(t)—l*é(t)).
In this case, the condition (2) is equivalent to the so-called Euler equation:
ni(t) = —ad*A_l(m(t))m(t). 3)

Now, we restrict G to the Bott-Virasoro group Vir. It is defined to be a set Diff(S 1) xz R, with
multiplication

(p,a)(@,b) =(poy,a+b+Bl,y)),
where B : Diff(S!) x Diff(S') — R is the Bott cocycle given by

Blo,9) = 3 | log(e o plogy.



The dual space of its Lie algebra vir* is identified with the vector space ¥(S!)* X R, where
X(SY) = {udx®dx|u € C*(S!)} consists of the quadratic forms on S!. Assume that (udx®dx, a) :
[a,b] — vir”" is the curved defined in (3) for the Bott-Virasoro group. Then, it is known that the
Euler equation amounts to

i =—au" —3uu’. 4)

which is nothing but the KdV equation. (See Vizman [13] for details).

1.2 The Space of Equicentroaffine Curves

On the other hand, the KdV equation can be derived in the following way. Let M denote the
connected component of the space of equicentroaffine curves containing the unit circle c. An
elementin Misa plain curvey : S! — R2withdet(y, y’) = 1. Given y € M, its equicentroaffine
curvature x : S! — R is determined by

Y’ +xy =0.

A tangent vector X € T), M on M is identified with a vector field along y, expressed in the form
1 ’ ’
X = _EA y+AyY,

where A : S! — R is some function on S'. In [5], Fujioka and Kurose studied two presymplectic
forms & and @1 on M, where &¢ was first created by Pinkall [11]. For X = —%A’y + Ay, Y =
iy + uy’ € T, M, & is defined by

@o(X,Y) ::/ Au'dx,
S]

which we will call the Pinkall 2-form, and &1 by

(X,Y) = / /\(%y’” + 2y + k' u)dx,
Sl

the Fujioka-Kurose 2-form. Fujioka and Kurose also studied a Hamiltonian function H on M,
whose Hamiltonian vector field Xy with respect to @1 is given by

1 /’ /’
Xu(y) = SKY =K,

where « is the equicentroaffine curvature of y. In terms of this vector field, let y : R — M be an
integral curve of Xy, and ®(—,t) : S I - R the corresponding equicentroaffine curvature of y(t),
which we will call the equicentroaffine curvature flow. Pinkall proved that such equicentroaffine
curvature flow ¥ must satisfy the KdV equation:

1
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It is very interesting that the KdV equation appears in such two completely different objects,
the Bott-Virasoro group and the space of equicentroaffine curves. We think that there may exist
some mathematical connection behind them, and this becomes the motivation for this study.



2 Main Results

Note that as the space of equicentroaffine curves, the KdV equation (@) derived from the Bott-
Virasoro group is also associated to a 2-form - the canonical symplectic form d® on the cotangent
bundle G < g*. With respect to dO, there is a Hamiltonian function E on G x g* such that the
g*-part of an integral curve (¢, &) of its Hamiltonian vector field Xg satisfies the Euler equation,
ie.,

é(t) = _adjq—l(é(t))é(t)'

This means that by setting G to be the Bott-Virasoro group Vir, we can obtain the KdV equation
in this way. In a word, we have related the KdV equation (4) derived from the Bott-Virasoro
group to a symplectic from d® and a Hamiltonian vector field X¢ with Hamiltonian function E.
On the other hand, we have already seen that KdV equation (5) is related to the presymplectic
form @1 and the vector field Xy with Hamiltonian function H

dH = —ix, @1.

Thus, it is reasonable to ask if there are some relations between these two forms, Hamiltonian
vector fields, and Hamiltonian functions. As a result, it does, and we have proved that both
the Fujioka-Kurose 2-form @1, and the Pinkall 2-form &g are the pullbacks of the canonical
symplectic form d® under certain maps. Note that for any y € M, there exists ¢ € Diff(S?)
such that

coy

y:C.l)D:W’

where the action on the right is called Pinkall’s right action. Now, we shall state the theorems:

Theorem 1. Given y € M, let 1 € Diff(S') such that y = c -, and define oo : M — Vir = vit* by

ao(y) = (¥, 0), (—%(w'l)’zdx ® dx, 0)).
Then, we have
0,d® = @y,
where d® is the canonical symplectic form on Vir = vit® and &g the Pinkall 2-form on M. m]

Theorem 2. Given y € M, let i € Diff(S') such that y = c - and define o1 : M — Vir = vir* by

o1(y) = ((§,0), (~xdx @ dx, ~3),
where « is the equicentroaffine curvature of y. Then, we have
07d® = @1,
where @1 is the Fujioka-Kurose 2-form on M. ]

Remark 3. In Theorem [I|and Theorem 2} it turns out that the vix*-part of oo and o1 are momentum
maps with respect to certain actions of Vir on M. This is one of the mains results in Fujioka, Kurose and
Moriyoshi [6].



By making use of 01, we can also obtain the following relation between Xy and Xg
01.(Xu(y)) = Xe(01(y)) + X (6)
where X € T, (,,)(Vir = pit") is a tangent vector such that
dO(Xs,(y),01.2) =0 (7)

for all Z € T, M. The existence of X in (6) may keep us from getting an explicit relation between
Xpg and Xg. But we have proved

Theorem 4. Let y € M be an element in M. Suppose that X € T, (,)(G < §°) is the tangent vector in
(6) which satisfies (7). Then, X has the form

X = (K, (0dx ® dx,0))
where K represents a tangent vector over G.

Theorem [ means that the vir*-part of X vanishes, and this will kill the obstruction produced by
X. Then, we can finally provide an explanation, or say another proof, of why the equicentroaffine
curvature flow ¥ must satisfies the KdV equation:

Corollary 5. Let y be an integral curve of Xy. Then, we have

]‘ ~11 ~

1;<:—§1< - 3x'%,

where K is the equicentroaffine curvature of y.
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