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1 Background

1.1 The Bott-Virasoro Group

For " a smooth manifold with metric (−,−) and 2 : [0, 1] → " a smooth curve, the energy of
2 is given by

ℰ(2) := 1
2

∫ 1

0

( ¤2(C), ¤2(C))3C, (1)

A variation of 2 is defined to be a smooth map 2̃ : [0, 1] × (−�, �) → " with 2̃(−, 0) = 2 and a
curve 2 is called a geodesic if for every variation 2̃ with endpoints fixed, we have
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ℰ(2̃(−, B)) = 0. (2)

When" is a Lie group � with inner product 〈−,−〉 on its Lie algebra g, there is a left-invariant
metric (−,−) on � by

(-6 , .6) := 〈;6−1 ∗-6 , ;6−1 ∗.6〉.

where -6 , .6 ∈ )6�. Letting � : g → g∗ be the natural isomorphism induced from the inner
product, we define a related curve of 2 in the dual Lie algebra < : [0, 1] → g∗ given by

<(C) := �(;2(C)−1 ∗ ¤2(C)).

In this case, the condition (2) is equivalent to the so-called Euler equation:

¤<(C) = −ad∗
�−1(<(C))<(C). (3)

Now, we restrict � to the Bott-Virasoro group Vir. It is defined to be a set Diff((1) ×� R, with
multiplication

(!, 0)(#, 1) = (! ◦ #, 0 + 1 + �(!,#)),

where � : Diff((1) ×Diff((1) → R is the Bott cocycle given by

�(!,#) := 1
2

∫
(1

log(!′ ◦ #)3 log#′.



The dual space of its Lie algebra vir∗ is identified with the vector space X((1)∗ × R, where
X((1)∗ = {D3G⊗3G |D ∈ �∞((1)} consists of the quadratic formson (1. Assume that (D3G⊗3G, 0) :
[0, 1] → vir∗ is the curved defined in (3) for the Bott-Virasoro group. Then, it is known that the
Euler equation amounts to

¤D = −0D′′′ − 3DD′. (4)

which is nothing but the KdV equation. (See Vizman [13] for details).

1.2 The Space of Equicentroaffine Curves

On the other hand, the KdV equation can be derived in the following way. Letℳ denote the
connected component of the space of equicentroaffine curves containing the unit circle 2. An
element inℳ is a plain curve � : (1 → R2 with det(�, �′) = 1. Given � ∈ ℳ, its equicentroaffine
curvature � : (1 → R is determined by

�′′ + �� = 0.

A tangent vector - ∈ )�ℳ onℳ is identified with a vector field along �, expressed in the form

- = −1
2�
′� + ��′,

where � : (1 → R is some function on (1. In [5], Fujioka and Kurose studied two presymplectic
forms $̂0 and $̂1 onℳ, where $̂0 was first created by Pinkall [11]. For - = − 1

2�
′� + ��′, . =

− 1
2�
′� + ��′ ∈ )�ℳ, $̂0 is defined by

$̂0(-,.) :=
∫
(1
��′3G,

which we will call the Pinkall 2-form, and $̂1 by

$̂1(-,.) :=
∫
(1
�(12�

′′′ + 2��′ + �′�)3G,

the Fujioka-Kurose 2-form. Fujioka and Kurose also studied a Hamiltonian function � onℳ,
whose Hamiltonian vector field -� with respect to $̂1 is given by

-�(�) =
1
2�
′� − ��′,

where � is the equicentroaffine curvature of �. In terms of this vector field, let �̃ : R→ℳ be an
integral curve of -� , and �̃(−, C) : (1 → R the corresponding equicentroaffine curvature of �̃(C),
whichwewill call the equicentroaffine curvature flow. Pinkall proved that such equicentroaffine
curvature flow �̃ must satisfy the KdV equation:

¤̃� = −1
2 �̃
′′′ − 3�̃′�̃. (5)

It is very interesting that the KdV equation appears in such two completely different objects,
the Bott-Virasoro group and the space of equicentroaffine curves. We think that there may exist
some mathematical connection behind them, and this becomes the motivation for this study.



2 Main Results

Note that as the space of equicentroaffine curves, the KdV equation (4) derived from the Bott-
Virasoro group is also associated to a 2-form - the canonical symplectic form 3Θ on the cotangent
bundle � n g∗. With respect to 3Θ, there is a Hamiltonian function � on � n g∗ such that the
g∗-part of an integral curve (!, �) of its Hamiltonian vector field -� satisfies the Euler equation,
i.e.,

¤�(C) = −ad∗
�−1(�(C))�(C).

This means that by setting � to be the Bott-Virasoro group Vir, we can obtain the KdV equation
in this way. In a word, we have related the KdV equation (4) derived from the Bott-Virasoro
group to a symplectic from 3Θ and a Hamiltonian vector field -� with Hamiltonian function �.
On the other hand, we have already seen that KdV equation (5) is related to the presymplectic
form $̂1 and the vector field -� with Hamiltonian function �

3� = −8-� $̂1.

Thus, it is reasonable to ask if there are some relations between these two forms, Hamiltonian
vector fields, and Hamiltonian functions. As a result, it does, and we have proved that both
the Fujioka-Kurose 2-form $̂1, and the Pinkall 2-form $̂0 are the pullbacks of the canonical
symplectic form 3Θ under certain maps. Note that for any � ∈ ℳ, there exists # ∈ Diff((1)
such that

� = 2 · # =
2 ◦ #√
#′

,

where the action on the right is called Pinkall’s right action. Now, we shall state the theorems:

Theorem 1. Given � ∈ ℳ, let # ∈ Diff((1) such that � = 2 · #, and define �0 :ℳ → Vir n vir∗ by

�0(�) := ((#−1 , 0), (−1
2 (#

−1)′23G ⊗ 3G, 0)).

Then, we have

�∗03Θ = $̂0 ,

where 3Θ is the canonical symplectic form on Vir n vir∗ and $̂0 the Pinkall 2-form onℳ. �

Theorem 2. Given � ∈ ℳ, let # ∈ Diff((1) such that � = 2 · # and define �1 :ℳ → Vir n vir∗ by

�1(�) := ((#, 0), (−�3G ⊗ 3G,−1
2 )),

where � is the equicentroaffine curvature of �. Then, we have

�∗13Θ = $̂1 ,

where $̂1 is the Fujioka-Kurose 2-form onℳ. �

Remark 3. In Theorem 1 and Theorem 2, it turns out that the vir∗-part of �0 and �1 are momentum
maps with respect to certain actions of Vir onℳ. This is one of the mains results in Fujioka, Kurose and
Moriyoshi [6].



By making use of �1, we can also obtain the following relation between -� and -�

�1∗(-�(�)) = -�(�1(�)) + - (6)

where - ∈ )�1(�)(Vir n vir∗) is a tangent vector such that

3Θ(-�1(�) , �1∗/) = 0 (7)

for all / ∈ )�ℳ. The existence of - in (6) may keep us from getting an explicit relation between
-� and -�. But we have proved

Theorem 4. Let � ∈ ℳ be an element inℳ. Suppose that - ∈ )�1(�)(� n g∗) is the tangent vector in
(6) which satisfies (7). Then, - has the form

- = ( , (03G ⊗ 3G, 0))

where  represents a tangent vector over �.

Theorem 4means that the vir∗-part of - vanishes, and this will kill the obstruction produced by
-. Then,we canfinallyprovide an explanation, or say anotherproof, ofwhy the equicentroaffine
curvature flow �̃ must satisfies the KdV equation:

Corollary 5. Let �̃ be an integral curve of -� . Then, we have

¤̃� = −1
2 �̃
′′′ − 3�̃′�̃,

where �̃ is the equicentroaffine curvature of �̃.
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