T1 theorem for Calderón-Zygumnd type operators bounded from L^p to L^q

Takahiro Ono

Tokyo Metropolitan University, Department of Mathmatics ono-takahiro@ed.tmu.ac.jp

Abstract

The T1 theorem is the necessary and sufficiently condition for L^2 boundedness of Calderón-Zygmund operators, given by G. David and J.L. Journé in 1984 [3]. In this talk, we shall consider the group of operators $CZO_{\alpha}(\delta)$ which includes Calderón-Zygmund operators, and we give a necessary and sufficiently condition for $T \in CZO_{\alpha}(\delta)$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$.

1 Introduction

In this paper, we denote $A \leq B$ as there exists a constant C > 0 and it satisfies $A \leq CB$. For a linear integral operator T, we say $T \in CZO(\delta)$ if T satisfies the following conditions:

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy \qquad (x \notin \operatorname{supp}(f))$$
(1.1)

for all $f \in L^2(\mathbb{R}^n)$ with compact support, where K(x, y) is a standard kernel, that is, a continuous function defined on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, x) : x \in \mathbb{R}^n\}$ and satisfying the following conditions for all $x, x_0, y, y_0 \in \mathbb{R}^n$:

(1)
$$|K(x,y)| \lesssim \frac{1}{|x-y|^n}$$
, (1.2a)

(2)
$$|K(x,y) - K(x,y_0)| \lesssim \frac{|y - y_0|^{\delta}}{|x - y|^{n + \delta}} \qquad \left(|y - y_0| < \frac{|x - y|}{2}\right), \quad (1.2b)$$

(3)
$$|K(x,y) - K(x_0,y)| \lesssim \frac{|x-x_0|^{\delta}}{|x-y|^{n+\delta}} \qquad \left(|x-x_0| < \frac{|x-y|}{2}\right).$$
 (1.2c)

Here $\delta \in (0, 1]$ is a positive constant. Researching boundedness of $T \in CZO(\delta)$ plays an important role in harmonic analysis, moreover in viewing of differential equation theory. For example, Riesz transform \mathcal{R}_j and Hilbert transform H satisfy $\mathcal{R}_j, H \in CZO(1)$.

More generally, for a linear integral operator T, we say $T \in CZO_{\alpha}(\delta)$ if it satisfies (1.1), (1.2*a*) and the following conditions:

(1)
$$|K(x,y) - K(x,y_0)| \lesssim \frac{|y - y_0|^{\delta + \alpha}}{|x - y|^{n + \delta}} \qquad \left(|y - y_0| < \frac{|x - y|}{2}\right), \quad (1.2b')$$

(2)
$$|K(x,y) - K(x_0,y)| \lesssim \frac{|x-x_0|^{\delta}}{|x-y|^{n+\delta}} \qquad \left(|x-x_0| < \frac{|x-y|}{2}\right).$$
 (1.2c')

Here $\delta \in (0, 1]$ is a positive constant, again.

Next, we define the function space $BMO(\mathbb{R}^n)$ and Campanato spaces $\mathcal{L}_{\alpha}(\mathbb{R}^n)$, which are classical and important spaces in function analysis. Here and after, we let \mathcal{P} be the set of all polynomial functions.

Definition 1.1. Let *B* be a ball on \mathbb{R}^n .

- (1) $||f||_{\text{BMO}} = \sup_{B \subset \mathbb{R}^n} \frac{1}{|B|} \int_B |f(x) f_B| dx,$
- (2) BMO(\mathbb{R}^n) = { $f \in \mathcal{S}'(\mathbb{R}^n) \mid ||f||_{BMO} < \infty$ } / \mathcal{P} ,

where $f_B = \frac{1}{|B|} \int_B f(x) dx$.

Definition 1.2. Let *B* be a ball on \mathbb{R}^n and $0 \leq \alpha < n$.

- (1) $||f||_{\mathcal{L}_{\alpha}} = \sup_{B \subset \mathbb{R}^n} \frac{1}{|B|^{1+\frac{\alpha}{n}}} \int_B |f(x) f_B| dx,$
- (2) $\mathcal{L}_{\alpha}(\mathbb{R}^n) = \{ f \in \mathcal{S}'(\mathbb{R}^n) \mid ||f||_{\mathcal{L}_{\alpha}} < \infty \} / \mathcal{P},$

where $f_B = \frac{1}{|B|} \int_B f(x) dx$.

A $C^{2[n/2]+2}$ -function ϕ is said to be a bump function if it satisfies following conditions:

(1) supp
$$\phi \subset B(0, 10)$$
, (2) $|\partial_x^{\alpha} \phi(x)| \le 1$ ($|\alpha| \le 2[n/2] + 2$).

We define the operator $\tau_{x_0} f(x) = f(x - x_0)$ for $x, x_0 \in \mathbb{R}^n$.

Definition 1.3. Let $0 \leq \alpha < n$. For a linear operator $T : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$, T is said to be α -weakly bounded $(T \in WB_{\alpha})$ if there exists a constant C such that:

$$|\langle T\tau_{x_0}(f_R), \tau_{y_0}(g_R)\rangle| \le CR^{-n-\alpha},$$

for all bump functions f, g and $x_0, y_0 \in \mathbb{R}^n$.

The following is the classical T1 theorem.

Theorem 1.4 ([3]). Let $T \in CZO(\delta)$. Then, $T1, T^*1 \in BMO$ and $T \in WB_0$ if and only if T is bounded on $L^2(\mathbb{R}^n)$.

Where T1 is the image T for the function 1.

2 Main theorem and techenical lemmas

The following is our main theorem.

Theorem 2.1. Let $1 < p, q < \infty$, $1/p = 1/q + \alpha/n$ and $T \in CZO_{\alpha}(\delta)$. Then, we have

- (1) If $T \in WB_{\alpha}$ and $T1, T^*1 \in \mathcal{L}_{\alpha}(\mathbb{R}^n)$, then T is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$.
- (2) Conversely, if T is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$, then $T \in WB_\alpha$ and T is also bounded from $L^\infty(\mathbb{R}^n)$ to $\mathcal{L}_\alpha(\mathbb{R}^n)$ (i.e. $T1, T^*1 \in \mathcal{L}_\alpha(\mathbb{R}^n)$).

To prove this theorem, we claim the following technical lemmas.

Lemma 2.2. Let $0 \leq \alpha < n/2$ and ϕ be a positive function on $[0, \infty)$ such that $\phi(|x|) \in L^1(\mathbb{R}^n)$. We assume that $|\Phi(x)| \leq \phi(|x|)$. Furthermore, let $\Psi \in L^1(\mathbb{R}^n)$ be a function satisfies $\int \Psi = 0$ and the following conditions:

(1)
$$|\Psi(x)| \lesssim (1+|x|)^{-n-\delta}$$
, (2) $\sup_{\xi \in \mathbb{R}^n} \int_0^\infty |t\hat{\Psi}(\xi)|^2 \frac{dt}{t} < \infty$,

for some constant $\delta > 0$. Then, we have

$$\left(\int_{\mathbb{R}^{n+1}_+} |\Phi_t(f)(x)|^2 |\Psi_t(g)|^2 dx \frac{dt}{t}\right)^{1/2} \lesssim ||f||_p ||g||_{\mathcal{L}_{\alpha}}$$

where $1/p = 1/2 + \alpha/n$.

We say a function $a \in L^{\infty}(\mathbb{R}^n)$ is (∞, α) -atom associated with ball $B \in \mathbb{R}^n$ if it satisfies supp $a \subset B$, $\int a = 0$ and $||a||_{\infty} \leq |B|^{-1+\alpha/n}$. Let $H^1_{\alpha}(\mathbb{R}^n)$ be the set of all functions $f \in \mathcal{S}(\mathbb{R}^n)$ such that there exists a sequence of numbers $\{\lambda_j\}_j \subset \mathbb{C}$ and sequence of (∞, α) -atoms $\{a_j\}_j$ associated with ball $\{B_j\}_j \subset \mathbb{R}^n$ and it satisfies $f = \sum_j \lambda_j a_j$. **Lemma 2.3.** Let $0 \leq \alpha < n$. Then the dual of $H^1_{\alpha}(\mathbb{R}^n)$ is $\mathcal{L}_{\alpha}(\mathbb{R}^n)$. More precisely, we have the following assertions:

(1) If $b \in \mathcal{L}_{\alpha}(\mathbb{R}^n)$, then the mapping

$$\ell = \ell_b : f \in L^{\infty}_{\text{comp}}(\mathbb{R}^n) \mapsto \int f(x)b(x)dx \in \mathbb{C}$$

can be extended to a bounded linear functional on H^1_{α} . Also, we have

$$||\ell|| \lesssim ||b||_{\mathcal{L}_{\alpha}}.$$

(2) Conversely, if ℓ is a continuous liner functional on H^1_{α} , then there exists $b \in \mathcal{L}_{\alpha}(\mathbb{R}^n)$ such that $\ell(f) = \int f(x)b(x)dx$ for all L^{∞}_{comp} and that

$$||b||_{\mathcal{L}_{\alpha}} \lesssim ||\ell||.$$

Lemma 2.4. Let T be a linear operator satisfies (1.1) and the kernel K(x, y) satisfies

$$|K(x,y) - K(x,x_0)| \lesssim \frac{|y - x_0|^{\alpha}}{|x - y|^n},$$

for any $x, y, x_0 \in \mathbb{R}^n$ with $|y - x_0| < |x - y|/2$. Then, if T is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for some $1 < p, q < \infty$ with $1/p = 1/q + \alpha/n$, T is also bounded from $L^{p'}(\mathbb{R}^n)$ to $L^{q'}(\mathbb{R}^n)$ for any $1 < p', q' < \infty$ with $1/p' = 1/q' + \alpha/n$.

References

- [1] R.R. Coifman, Y.Meyer, E.M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal, 62(1985), 304-335.
- [2] G. Dafni, J. Xiao, The dyadic and atomic decomposition of Q space in several real variables, Tohoku Math. J. 57(2005), 119-145.
- [3] G. David, J. L. Journé, A boundedness criterion for generalized Calderon-Zygmmund operators, Anal. of Math (2), 1984, 41-72.
- [4] M. Frazier, B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal, 93(1990) 34-170.
- [5] L. Grafakos, Classical and modern Fourier analysis, Pearson Education Inc., NJ, 2004.

- [6] Y.S. Han, T1 theorem for Besov and Triebel-Lizorkin spaces, Transaction of the American Math, Vol. 337, 1993, 839-853.
- [7] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidian spaces, Princeton Univ. Press, Princeton, NJ, 1971.
- [8] E. Nakai, A generalization of Hardy space H^p by using atoms, Acta Math. Sinica, 24(2008), 1243-1268
- [9] E. Nakai, Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. of Funct. Anal, 262(2012), 3665-3748
- [10] E. Nakai, Y. Sawano, Orlicz-Hardy spaces and their duals, Sci China Math., 2014, 903-962
- [11] H.Triebel, Theory of function spaces, Brinkäuser, Basel, 1983.
- [12] D.Yang, T1 theorems on Besov and Triebel-Lizorkin spaces on the type of homegeneous type and their applications, Zeitschrift f
 ür Analysis, Vol. 22, 2003,