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1 Introduction

Air pollution is one of the most serious global issues because of its adverse effects on human
health as well as environmental damage. In such a situation, public interest in the protection
from health issues caused by air pollutants has enlarged. To tale any actions not to expand the
damages from air pollution, prediction of the future trend in air pollution is needed. Currently,
there is a forecast system called VENUS (Visual atmospheric ENvironmental Utility System),
provided by National Institute for Environmental Studies, Japan. The information about PM2.5
concentration and O3 in 3 days ahead is available on their website. They perform this estimation
of air pollutants by numerical simulation of physical and chemical processes, which are based
on weather forecast data and other environmental data. Motivated by such demand in society,
there are more and more studies in machine learning application to construct prediction models.

As a successful example of machine learning models using air quality monitoring data, a
PM10 prediction model based on support vector machine with regression showed acceptable
performance in Spain [1]. Another investigation in urban air quality proposed a well-performed
boosted regression tree model constructed from particle matter concentration data together
with traffic data and meteorological data [5]. Particularly, a strategy to apply random forest
for building models seems to be effective. Such a model to predict PM2.5 in the U.S. on a
national scale was established in [2], where the authors also employed a significant technique
in the predictor variable integration. Moreover, random forest algorithm was also adopted for
the estimation of PM2.5 in China [3], which is used to obtain reliable historical PM2.5 exposure
levels in epideminological studies. Recently, LightGBM approach emerged in [6], whose accuracy
was greater than the performance of other machine learning algorithm based models.

In this paper, we developed LightGBMmodels to predict daily averaged PM2.5 concentration
in 1 day ahead. Our target area is the entire Tokyo. We used air quality monitoring data,
meteorological data, and social data. We proposed regional models to obtain a more accurate
prediction. More concretely, the same number of models as the number of PM2.5 measurement
system stations were created. Therefore, the procedure of hyperparameter tuning was carried
out for each location independently. This research is aimed at connecting to the practical use of
getting predicted future PM2.5 concentrations by adding the latest observed values to update
the prediction model day by day.

2 Method

2.1 Data resource

Regarding the air pollution monitoring, the Japanese government set the environmental stan-
dard for PM2.5 concentration in the atmosphere in September 2009. The Tokyo Metropolitan



Government has begun to developing PM2.5 automatic measuring machines since 2010, and is
currently monitoring atmospheric environment including PM2.5 concentrations in atmospheric
environment at all measurement stations. The locations of the measurement stations whose
measuring results are used to our study are shown in Figure 1. The hourly monitoring records
of PM2.5 concentration, SPM concentrations, temperature, relative humidity, wind speed, and
oxidant are downloaded from the Tokyo Metropolitan Government website.

More detailed meteorological observation statistical values such as daily averaged precipita-
tion are available on the Japan Meteorological Agency website. We use the daily averaged values
of precipitation, pressure, and the 24 hours sum of the daylight hours. The observation site of
pressure is only the place ‘Tokyo’ among the meteorological observation stations, described in
Figure 2.

The population estimate for Tokyo is based on the census population as of October 1, 2015,
and is estimated by adding the number of changes in the population of the Basic Resident
Register every month. We obtained the monthly population estimate by city and ward from the
Tokyo Metropolitan Government website.

In this paper, for all of the air pollution measurements, the meteorological observations, and
the population estimate, we focus on the data collected from October in 2013 to September in
2018.

2.2 Feature integration

We have selected the features divided in four types, shown in Table 1. Basically we took
the daily average for each hourly observed values. For the precipitation and the daylight hours,
we took the sum of each day. We also added a weekly mean of observed PM2.5 concentration.
When negative values appeared in the data, then we dealt with them by replacing with 0.

In our scheme of the proper use of the prediction, we needed to arrange the values of PM2.5
concentration on a day, which combined with other information on the previous day as one
record. Thus, the prediction would be performed using the data obtained until 1 day before.

Let us give a description of the predictor variables in detail. We have four different types of
features.

1. Particle matter feature. The features of this type are based on the observed values of
PM2.5 and SPM concentration. We took the weekly average on PM2.5, and the difference
between the values in 1 day before and those of 2 days before for PM2.5 and SPM. Addition
of the convolutional layer for PM2.5 plays a key role, that is a modern technique introduced
in [2]. Its value at a monitoring site i is defined by the formula∑
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where xj is the observed PM2.5 concentration value and dij is the distance from the
monitoring site i to another monitoring site j.

2. Meteorological feature. This feature type includes the meteorological conditions such as
the temperature, the relative humidity, the oxidant, and the wind speed observed at the
PM2.5 measurement stations in Figure 1 as well as the daily precipitation, pressure, and
the daylight hours obtained at the weather observation sites in Figure 2.

http://www.kankyo.metro.tokyo.jp/air/air_pollution/torikumi/result_measurement.html
https://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=44&block_no=47662&year=&month=&day=&view=
http://www.toukei.metro.tokyo.jp/jsuikei/js-index.htm
http://www.toukei.metro.tokyo.jp/jsuikei/js-index.htm


3. Temporal feature. We used the calendar month parameter to characterize the temporal
information.

4. Social feature. The monthly population estimate by city and ward were involved.

Type Feature Statement unit

PM25 lag1 daily PM2.5 concentration of 1 day before µg/m3

SPM lag1 daily SPM concentration of 1 day before µg/m3

PM25 conv lag1 the convolutional layer for PM2.5 of 1 day before µg/m3

Particle matter feature PM avg the weekly average of PM2.5 concentration µg/m3

diff PM25
difference between daily PM2.5 concentration
of 1 day before and one of 2 days before

µg/m3

diff SPM
difference between daily SPM concentration
of 1 day before and one of 2 days before

µg/m3

diff PM25 conv
difference between the convolutional layer
for PM2.5 of 1 day before and one of 2 days before

µg/m3

Temperature lag1 daily average of temperature of 1 day before 0.1 ◦C
Humidity lag1 daily average of relative humidity of 1 day before 0.1 %
Ox lag1 daily average of oxidant of 1 day before ppb
Precipitation lag1 daily sum of precipitation of 1 day before mm
Pressure lag1 daily average pressure of 1 day before hPa
Sunshine lag1 the daylight hours of 1 day before hours

Meteorological feature wind lag1 daily average wind speed of 1 day before 0.1 m/s

diff Ox
difference between daily average oxidant of
1 day before and one of 2 days before

ppb

diff Precipitation
difference between daily precipitation of
1 day before and one of 2 days before

mm

diff Press
difference between daily pressure of
1 day before and one of 2 days before

hPa

diff Sunshine
difference between the daylight hours of
1 day before and one of 2 days before

hours

diff wind
difference between daily wind speed of
1 day before and one of 2 days before

0.1 m/s

Temporal feature Month calendar month

Social feature Population the monthly population estimate by city and ward

Table 1: Feature list

2.3 Solution statement

In this paper, we chose LightGBM for our prediction model, which is a machine learning
framework of gradient boosting based on decision tree. The technique of gradient boosting has
been highly attractive in the field of competitive data science. The basis of LightGBM is as
follows.

• Decision Tree. It is a popular method of the supervised learning, which grows branches of
dataset by a criterion determined by the features.

• Ensemble Leaning. Ensemble method builds one training model by a combination of
multiple models.

• Gradient Boosting. Boosting method reflects the output from one step previous weak
learner in the next training dataset. That is, it improves the ensemble performance by
developing an weak learner to train the training sample which is the residuals of another
weak learner. In each iteration of gradient boosting, the gradients are applied to evaluate
the loss function with respect to the output of the model.



In the training process of gradient boosting, there are two methods for handling decision
tree as follows.

• Level-wise: The tree grows by levels, which is traditionally used. We give a description in
Figure 3.

• Leaf-wise: The tree grows by leaves as shown in Figure 4. It has a tendency to reduce the
computational cost in the training process. Since it constructs more complicated trees, it
raises the model accuracy and at the same time it tends to lead to overfitting.

LightGBM applies the leaf-wise method in training process of boosting so that it efficiently
decreases the calculation cost.

One of the crucial techniques of LightGBM is the histogram-based algorithm in the process
of the training of decision tree. This algorithm constructs discrete bins from continuous feature
values. Then it uses the bins to create the feature histograms, so that it can effectively find
best split points derived from the feature histograms. These procedures are beneficial to realize
reducing the training costs including the memory consumption and computational cost on the
split point determination. Particularly, in order to make the cost on the step for the histogram
building smaller, it is necessary to reduce the size of dataset and the number of features. Light-
GBM is outstanding in the reducing since it is equipped with the successful strategies for dataset
subsampling and weak features filtering [4].

2.4 Approach

Our aim is to predict the daily averaged PM2.5 concentration in 1 day ahead for each location.
Therefore, we suppose to get the predicted values by a prediction model associated with the data
gathered until the previous day. Moreover, in order to obtain more accurate prediction, we have
created the models for each PM2.5 monitoring site.

We applied grid search technique for hyperparameter tuning. In particular, we considered
the following hyperparameters of LightGBM.

1. n estimators. The number of boosting iterations.

2. max depth. The maximum value of the tree depth. Generally, this parameter should be
restricted to tackle overfitting. It also should be adjusted by keeping a balance between
max depth and other hyperparameters to acquire more accurate model.

3. num leaves. The maximum number of leaves in one tree. Since it controls the complexity
of decision tree, it may largely affects on the model performance. Too large value causes
overfitting and too small value causes underfitting. It is better to change together with
max depth.

4. learning rate. The shrinkage rate. It controls the model not to lead to overfitting.

All statistical computing was done in Python, version 3.7.3, using scikit-learn (version 0.21.0)
and lightgbm (version 2.3.0) packages.

2.5 Training and test dataset

We made a partition of training and test datasets by a specific date. More concretely, the
period for the training dataset is from 2013/10/08 to 2017/09/30, while the period for the test
dataset is from 2017/10/01 to 2018/09/30. In other words, the training data contains the records
for 5 years and the test data contains for 1 year.



2.6 Evaluation function

The model performance was evaluated using two different functions such as Root Mean
Squared Error (RMSE) and Coefficient of determination (R2). For the predicted values pi,
RMSE and R2 are defined by

RMSE =
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where yi is an actual value, µi is mean of actual values, and n is the number of observations.

3 Result

The model performance for each training and test dataset is printed in Table 2. The column
of ‘Range’ and ‘Average’ for all sites displays minimum, maximum values of the performance and
the average for all locations respectively. For ‘Overall’, we gathered all predicted values from each
location and then calculate the evaluation indicators with all observed values. We achieved that
RMSE = 2.927 and R2 = 0.840 on test dataset. Considering our challenging points, although it
is natural to vary the scores in different locations, we have some unsatisfactory models whose
RMSE and R2 are maximum and minimum among all monitoring sites respectively. Comparing
RMSE scores among all locations, the maximum value 2.503 of RMSE appeared Harumi Chuo-
ku on training data, while on test data Yashio Shinagawa-ku model took the maximum value
3.559 of RMSE. Its difference is about 1.0, which is almost the same as the difference of average
RMSE between training data and test data. On the other hand, since R2 is an evaluation index
which means better if the value is close to close to 1, the models with minimum R2 should be
improved. The largest value 0.914 of R2 occurred at Takanawa Minato-ku in training data,
however, the minimum in test data is 0.724 at Higashiome Ome-shi. These results give more
than 0.18 of difference, so the difficulty is how to deal with this issue to diminish such a gap
between training data and test data, that is, how to build models to fit not only to training data
but also test data nearly equally.

Model Performance statistics Range Average for all sites Overall

RMSE on train 1.303 – 2.503 1.914 1.949
R2 on train 0.914 – 0.966 0.935 0.936

LightGBM RMSE on test 2.534 – 3.558 2.922 2.927
R2 on test 0.724 – 0.901 0.830 0.840

Table 2: Performance of the ML models

We provide a scatter plot of actual values and predicted values for daily averaged PM2.5
concentrations in Figure 5. We can see that the predicted value has a positive linear relationship
with the actual value regardless of the training or test dataset. For test dataset, the model is
likely to estimate lower than actual values, especially in the range of larger values. On the other
hand, for training dataset, larger estimation than actual values occurs around 0 of actual values.

We show the ranking of the feature importance calculated by taking mean for all monitoring
sites in Figure 6. The features generated by PM2.5 concentrations such as the values in 1
day before, the weekly average, and the convolutional layer for PM2.5 of 1 day before have



significantly large contributions to our model. The first 10 features contain four PM2.5 related
features and five different kinds of meteorological features. This fact verifies the advantage of
using features of particle matter type and meteorological type.
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Figure 1: Atmospheric environment measurement stations in Tokyo.



Figure 2: Weather observation sites in Tokyo.

…

Figure 3: Level-wise decision tree training.

…

Figure 4: Leaf-wise decision tree training.



Figure 5: Scatter plot of actual values and predicted values.

Figure 6: Feature importance.
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