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Abstract

The purpose of this study is finding a common minimizer of two convex functions on a
geodesic space. The iterative schemes for this problem have Halpern iteration, contraction
projection method, CQ method and so on. To iterative a common minimizer by Mann
type iteration, we use properties of the resolvent in this study. In this paper, we show
fundamental properties of a CAT(1) space, our theorem and recent results.

1 Introduction
We know that Mann’s iterative scheme [10] is a very effective method to find a fixed point of a
nonexpansive mapping. By using this scheme, a large number of authors have proved various
kinds of theorems. Reich [13] proved a weak convergence theorem for Mann type iteration in
a Banach space. Takahashi and Tamura [12] proved weak convergence of an iteration gener-
ated by two nonexpansive mappings in a Banach space. Motivated by these results, researchers
began to investigate the Mann type scheme defined on geodesic spaces. Dhompongsa and Pa-
nyanak [3] proved ∆-convergence of an iteration generated by a nonexpansive mapping in a
CAT(0) space. Kimura and Nakagawa [7] proved ∆-convergence of an iteration generated by
two quasinonexpansive and ∆-demiclosed mappings in a CAT(1) space. We show the theorem
in [7].

Theorem 1.1. (Kimura and Nakagawa [7]) Let X be a complete CAT(1) space such that for
any u, v ∈ X, d(u, v) < π/2. Let S and T be quasinonexpansive and ∆-demiclosed mappings
from X into itself with F (S)∩F (T ) ̸= ∅. Let {αn}, {βn} and {γn} be sequences of [a, b] ⊂ ]0, 1[.
Define a sequence {xn} ⊂ X by the following recurrence formula: x1 ∈ X and un = (1− βn)xn ⊕ βnSxn,

vn = (1− γn)xn ⊕ γnTxn,
xn+1 = (1− αn)un ⊕ αnvn

for n ∈ N. Then {xn} ∆-converges to a common fixed point of S and T .

In this paper, the authors prove Theorem 3.1 based on Theorem 1.1 with the resolvent in a
complete CAT(1) space.

The resolvent for a convex function on a Hilbert space is defined as follows: Let f be a proper
lower semicontinuous convex function from a Hilbert space H into ]−∞,∞]. The resolvent Jf
of f is defined by

Jfx = argmin
y∈H

{f(y) + 1

2
∥y − x∥2}



for all x ∈ X. We know that Jf is a single-valued mapping from H to H. On the other hand,
the resolvent on a Hadamard space, a complete CAT(0) space, is proposed by Jost [4] and Mayer
[11]. Let X be an Hadamard space. Let f be a proper lower semicontinuous convex function
from a Hadamard space X into ]−∞,∞]. The resolvent Rf of f is defined by

Rfx = argmin
y∈X

{f(y) + 1

2
d(y, x)2}

for all x ∈ X. We know that Rf is a single-valued mapping from X to X. We also know the
definition and some properties of the resolvent in a complete CAT(1) space [5, 6]. We show
them in preliminaries.

2 Preliminaries
Let X be a metric space. For x, y ∈ X, a mapping c : [0, l] → X is called a geodesic if c satisfies

c(0) = x, c(l) = y, and d(c(u), c(v)) = |u− v|

for every u, v ∈ [0, l]. An image [x, y] of c is called a geodesic segment joining x and y. If a
geodesic exists for every x, y ∈ X, then we call X a geodesic space.

Let X be a geodesic space. For a triangle △(x, y, z) ⊂ X such that d(x, y)+d(y, z)+d(z, x) <
2π, let a comparison triangle △(x̄, ȳ, z̄) in two-dimensional unit sphere S2 be such that each
corresponding edge has the same length as that of the original triangle. X is called a CAT(1)
space if for every x, y, z ∈ X such that d(x, y) + d(y, z) + d(z, x) < 2π, every p, q ∈ △(x, y, z)
and their corresponding points p̄, q̄ ∈ △(x̄, ȳ, z̄) satisfy that

d(p, q) ≤ dS2(p̄, q̄),

where dS2 is the spherical metric on S2.
Let X be a CAT(1) space. For every x, y ∈ X with d(x, y) < π and α ∈ [0, 1], if z ∈ [x, y]

satisfies that d(y, z) = αd(x, y) and d(x, z) = (1−α)d(x, y), then we denote z by z = αx⊕(1−α)y.
A subset C ⊂ X is called π-convex if αx⊕ (1−α)y ∈ C for every x, y ∈ C with d(x, y) < π and
α ∈ [0, 1].

For every x, y, z ∈ X with d(x, y)+d(y, z)+d(z, x) < 2π and α ∈ [0, 1], the following inequality
holds [8]:

cos d(x,w) sin d(y, z) ≥ cos d(x, y) sin(αd(y, z)) + cos d(x, z) sin((1− α)d(y, z)),

where w = αy ⊕ (1− α)z.
A CAT(1) space X is said to be admissible if every x, y ∈ X satisfy that d(x, y) < π/2.
Let X be a CAT(1) space and let T be a mapping from X to X such that the set F (T ) =

{z ∈ X : z = Tz} of fixed points of T is not empty. If d(Tx, p) ≤ d(x, p) for every x ∈ X and
p ∈ F (T ), then we call T a quasinonexpansive mapping.

T is said to be strongly quasinonexpansive if T is a quasinonexpansive mapping,
and limn→∞ d(xn, Txn) = 0 whenever {xn} ⊂ X satisfies supn∈N d(xn, p) < π/2 and
limn→∞(cos d(xn, p)/ cos d(Txn, p)) = 1 for every p ∈ F (T ).

We also define a strongly quasinonexpansive sequence. A sequence {Tn} of mappings from
X to X is called a strongly quasinonexpansive sequence if each Tn is a quasinonexpansive
mapping, and limn→∞ d(xn, Tnxn) = 0 whenever {xn} ⊂ X satisfies supn∈N d(xn, p) < π/2 and
limn→∞(cos d(xn, p)/ cos d(Tnxn, p)) = 1 for every p ∈

∩∞
n=1 F (Tn); see [1].

Let X be a metric space. An element z ∈ X is said to be an asymptotic center of {xn} ⊂ X
if

lim sup
n→∞

d(xn, z) = inf
x∈X

lim sup
n→∞

d(xn, x).



Moreover, {xn} ∆-converges to a ∆-limit z if z is the unique asymptotic center of any subse-
quences of {xn}.

Let X be a CAT(1) space and let T be a mapping from X to X such that F (T ) ̸= ∅. T is said
to be ∆-demiclosed if z ∈ F (T ) whenever {xn} ∆-converges to z and limn→∞ d(xn, Txn) = 0.

We also define a ∆-demiclosed sequence. A sequence {Tn} of mappings from X to X
is called a ∆-demiclosed sequence if z ∈

∩∞
n=1 F (Tn) whenever {xn} ∆-converges to z and

limn→∞ d(xn, Tnxn) = 0; see [1].
Let X be a complete CAT(1) space and let C ⊂ X be a nonempty closed π-convex subset

such that d(x,C) = infy∈C d(x, y) < π/2 for every x ∈ X. Then for every x ∈ X, there exists a
unique point x0 ∈ C satisfying

d(x, x0) = inf
y∈C

d(x, y).

We define the metric projection PC from X onto C by PCx = x0. We know that the metric
projection PC is a strongly quasinonexpansive and ∆-demiclosed mapping such that F (PC) = C
[2, 9].

Let X be an admissible complete CAT(1) space. Let f be a proper lower semicontinuous
convex function from X into ]−∞,∞]. The resolvent Rf of f is defined by

Rfx = argmin
y∈X

{f(y) + tan d(y, x) sin d(y, x)}

for all x ∈ X [5]. We know that Rf is a single-valued mapping from X to X. We also
know that the resolvent Rf is strongly quasinonexpansive and ∆-demiclosed such that F (Rf ) =
argminx∈X f [5, 6].

We introduce some lemmas and theorem used for our results.

Lemma 2.1. (Kimura and Satô [8]) Let X be a CAT(1) space. For every x, y, z ∈ X with
d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds:

cos d(x,w) sin d(y, z) ≥ cos d(x, y) sin(αd(y, z)) + cos d(x, z) sin((1− α)d(y, z)),

where w = αy ⊕ (1− α)z.

Lemma 2.2. (Kimura and Satô [9]) Let X be a CAT(1) space. For every x, y, z ∈ X with
d(x, y) + d(y, z) + d(z, x) < 2π and α ∈ [0, 1], the following inequality holds:

cos d(x,w) ≥ α cos d(x, y) + (1− α) cos d(x, z),

where w = αy ⊕ (1− α)z.

Theorem 2.3. (Esṕınola and Fernández-León [2]) Let X be a complete CAT(1) space. Let {xn}
be a sequence in X. If r({xn}) < π/2, then the following hold:

(a) AC({xn}) consists of exactly one point;
(b) {xn} has a ∆-convergent subsequence.

Lemma 2.4. Let σ be a real number in ]−1, 0[ and {bn}, {cn} real sequences in [σ, 1] and
lim infn→∞ bncn ≥ 1. Then limn→∞ bn = limn→∞ cn = 1.

Lemma 2.5. Let s be a real number in ]0,∞[ and {bn}, {cn} bounded real sequences such that
bn ≤ 0, s < cn and limn→∞ bn/cn = 0. Then limn→∞ bn = 0.

Lemma 2.6. Let {bn}, {cn} be bounded real sequences such that limn→∞(bn − cn) = 0. Then
lim infn→∞ bn = lim infn→∞ cn.



3 Main result
To prove this theorem, we employ the technique proposed in [7].

Theorem 3.1. Let X be an admissible complete CAT(1) space. Let {λn} and {µn} be sequences
of positive real numbers such that infn λn > 0 and infn µn > 0. Let f and g be proper lower
semicontinuous convex functions from X into ]−∞,∞] such that F = argminX f ∩argminX g ̸=
∅. Let Rλnf and Rµng be the resolvents of λnf and µng, respectively. For a given real number
a ∈

]
0, 1

2

]
, let {αn}, {βn} and {γn} are sequences in [a, 1− a]. Let {xn} be a sequence in X

defined by x1 ∈ X and  un = βnxn ⊕ (1− βn)Rλnfxn,
vn = γnxn ⊕ (1− γn)Rµngxn,
xn+1 = αnun ⊕ (1− αn)vn

for all n ∈ N. Then {xn} ∆-converges to a point of F .

Proof. Let z ∈ F . By Lemma 2.2, we have

cos d(un, z) ≥ βn cos d(xn, z) + (1− βn) cos d(Rλnfxn, z)

≥ cos d(xn, z).

Similarly, we have
cos d(vn, z) ≥ cos d(xn, z).

By these inequalities, we obtain

cos d(xn+1, z) ≥ αn cos d(un, z) + (1− αn) cos d(vn, z)

≥ cos d(xn, z).

Thus, we have d(xn+1, z) ≤ d(xn, z) for all n ∈ N and there exists

D = lim
n→∞

d(xn, z) ≤ d(x1, z) <
π

2
.

By Lemma 2.1, we have

cos d(un, z) sin d(xn, Rλnfxn)

≥ cos d(xn, z) sinβnd(xnRλnfxn) + cos d(Rλnfxn, z) sin(1− βn)d(xn, Rλnfxn)

≥ 2 cos d(xn, z) sin
d(xn, Rλnfxn)

2
cos

(2βn − 1)d(xn, Rλnfxn)

2
. (1)

Similarly, we get

cos d(vn, z) sin d(xn, Rµngxn)

≥ cos d(xn, z) sin γnd(xnRλnfxn) + cos d(Rµngxn, z) sin(1− γn)d(xn, Rµngxn)

≥ 2 cos d(xn, z) sin
d(xn, Rµngxn)

2
cos

(2γn − 1)d(xn, Rµngxn)

2
. (2)

Let dn = d(xn, z), fn = d(xn, Rλnfxn)/2 and gn = d(xn, Rµngxn)/2 for all n ∈ N.
If fn ̸= 0 and gn = 0, then we have vn = xn. From (1), (2) and Lemma 2.2, we have

2 cos dn+1 sin fn cos fn = cos dn+1 sin 2fn

≥ αn cos d(un, z) sin 2fn + (1− αn) cos d(vn, z) sin 2fn

≥ 2αn cos dn sin fn cos(2βn − 1)fn + 2(1− αn) cos dn sin fn cos fn



Dividing by 2 sin fn > 0, we obtain

cos dn+1 cos fn ≥ αn cos dn cos(2βn − 1)fn + (1− αn) cos dn cos fn. (3)

If fn = 0 and gn ̸= 0, then we have un = xn. Similarly, we have

cos dn+1 cos gn ≥ αn cos dn cos gn + (1− αn) cos dn cos(2γn − 1)gn. (4)

If fn ̸= 0 and gn ̸= 0, then from (1), (2) and Lemma 2.2, we have

cos dn+1 sin 2fn sin 2gn

≥ αn cos d(un, z) sin 2fn sin 2gn + (1− αn) cos d(vn, z) sin 2fn sin 2gn

≥ 4 cos dn sin fn sin gn(αn cos(2βn − 1)fn cos gn + (1− αn) cos fn cos(2γn − 1)gn).

Dividing by 4 sin fn sin gn > 0, we have

cos dn+1 cos fn cos gn

≥ αn cos dn cos(2βn − 1)fn cos gn + (1− αn) cos dn cos fn cos(2γn − 1)gn). (5)

If fn = 0 and gn = 0, then we also have the inequality (5), and the inequality (5) can be
reduced to the inequality (3), (4) for each case. From inequality (5), we have(

ϵn cos fn
(1− αn) cos(2βn − 1)fn

− αn

1− αn

)(
ϵn cos gn

αn cos(2γn − 1)gn
− 1− αn

αn

)
≥ 1,

where ϵn = cos dn+1/ cos dn for n ∈ N. It follows that limn→∞ ϵn = cosD/ cosD = 1. Since
{αn} ⊂ [a, 1− a] for all n ∈ N, we obtain

lim inf
n→∞

(
cos fn

(1− αn) cos(2βn − 1)fn
− αn

1− αn

)(
cos gn

αn cos(2γn − 1)gn
− 1− αn

αn

)
≥ 1, (6)

We show that there exists n0 ∈ N such that for all n ≥ n0,the following hold:

−1

2
≤ cos fn

(1− αn) cos(2βn − 1)fn
− αn

1− αn
≤ 1 (7)

and

−1

2
≤ cos gn

αn cos(2γn − 1)gn
− 1− αn

αn
≤ 1. (8)

We show the second inequality of (7). Since {βn} ⊂ [a, 1− a] for all n ∈ N, we obtain

cos fn
(1− αn) cos(2βn − 1)fn

− αn

1− αn
≤ 1

1− αn
− αn

1− αn
= 1.

Similarly, we show the second inequality of (8). Next, we show the first inequality of (7). Let

σn =
cos fn

(1− αn) cos(2βn − 1)fn
− αn

1− αn
and θn =

cos gn
αn cos(2γn − 1)gn

− 1− αn

αn
.

We assume that the first inequality of (7) does not hold. Then we can get a subsequence
{σni} ⊂ {σn} such that σni < −1/2 and limi→∞ σni = σ ≤ −1/2. Since {αn}, {γn} ⊂ [a, 1− a]
and {gn} ⊂ [0, π/4[, we get {gn} is bounded. Let {θnij

} ⊂ {θni} ⊂ {θn} such that {θnij
}

converges to θ ∈ R. From the inequality (6), we have

σθ = lim
j→∞

σnij
θnij

≥ lim inf
n→∞

σnθn ≥ 1.



Therefore, we may assume that θnij
< 0 for all j ∈ N. Since {fn}, {gn} ⊂ [0, π/4[ and

{βn}, {γn} ⊂ [a, 1− a], we have

0 <

√
2

2(1− a)
≤ cos fn

(1− αn) cos(2βn − 1)fn
(9)

and

0 <

√
2

2(1− a)
≤ cos gn

αn cos(2γn − 1)gn
. (10)

Let ρ ∈ R such that

0 < ρ < min

{ √
2

2(1− a)
,

2a

1− a

}
. (11)

From the inequalities (9), (10), we have

ρ−
αnij

1− αnij

≤ σnij
< 0 and ρ−

1− αnij

αnij

≤ θnij
< 0. (12)

From the inequalities (11), (12), we have

σnij
θnij

≤

(
ρ−

αnij

1− αnij

)(
ρ−

1− αnij

αnij

)

= ρ2 −

(
αnij

1− αnij

+
1− αnij

αnij

)
ρ+ 1

≤ ρ2 − 2a

1− a
ρ+ 1

= ρ

(
ρ− 2a

1− a

)
+ 1.

Then, as j → ∞, we obtain

1 ≤ σθ ≤ ρ

(
ρ− 2a

1− a

)
+ 1 < 1.

This is a contradiction. Similarly, we obtain the left inequality of (8). From the inequalities
(7), (8) and Lemma 2.4, we have

lim
n→∞

(
cos fn

(1− αn) cos(2βn − 1)fn
− αn

1− αn

)
= lim

n→∞

(
cos gn

αn cos(2γn − 1)gn
− 1− αn

αn

)
= 1.

Hence, we have

lim
n→∞

cos fn − cos(2βn − 1)fn
(1− αn) cos(2βn − 1)fn

= 0.

By Lemma 2.5, we get
lim

n→∞
(cos fn − cos(2βn − 1)fn) = 0.

By Lemma 2.6, we have

lim inf
n→∞

cos fn = lim inf
n→∞

cos(2βn − 1)fn = lim inf
n→∞

cos |2βn − 1| fn.



Hence, we obtain

lim sup
n→∞

fn = lim sup
n→∞

(|2βn − 1| fn) ≤ lim sup
n→∞

|2βn − 1| lim sup
n→∞

fn.

Furthermore, we get

lim inf
n→∞

(1− |2βn − 1|) lim sup
n→∞

fn =

(
1− lim sup

n→∞
|2βn − 1|

)
lim sup
n→∞

fn ≤ 0.

Since {βn} ⊂ [a, 1− a] for all n ∈ N, we get lim infn→∞(1 − |2βn − 1|) > 0 and thus
lim supn→∞ fn = 0. It implies that d(xn, Rλnfxn) → 0. Similarly, we get d(xn, Rµngxn) → 0.

Next, we show {xn} ∆-converges to a point of F . Let {xnk
} be a subsequence of {xn}.

Since r({xn}) ≤ D < π/2 and Theorem 2.3(a), there exists a unique asymptotic center x0

of {xnk
}. Since r({xnk

}) < π/2 and Theorem 2.3(b), there exists a subsequence {xnkl
} of

{xnk
} such that {xnkl

} ∆-converges to x′
0 ∈ X. Moreover, since d(xnkl

, Rλnkl
fxnkl

) → 0,

d(xnkl
, Rµnkl

gxnkl
) → 0 and {Rλnkl

f}, {Rµnkl
g} are ∆-demiclosed sequence, we obtain x′

0 ∈ F =

argminX f ∩ argminX g. If x0 ̸= x′
0, by Theorem 2.3(a) and the uniqueness of the asymptotic

centers, we get

lim sup
k→∞

d(xnk
, x0) < lim sup

k→∞
d(xnk

, x′
0)

= lim
n→∞

d(xn, x
′
0)

= lim sup
l→∞

d(xnkl
, x′

0)

< lim sup
l→∞

d(xnkl
, x0)

≤ lim sup
k→∞

d(xnk
, x0).

This is a contradiction. Hence, we have x0 ∈ F = argminX f ∩ argminX g. Let {uk}, {vk}
be subsequences of {xn}, u0 ∈ AC({uk}) and v0 ∈ AC({vk}). If u0 ̸= v0, then since u0 /∈
AC({vk}), v0 /∈ AC({uk}) and by Theorem 2.3(a), we have

lim sup
k→∞

d(uk, u0) < lim sup
k→∞

d(uk, v0)

= lim
n→∞

d(xn, v0)

= lim sup
k→∞

d(vk, v0)

< lim sup
k→∞

d(vk, u0)

= lim
n→∞

d(xn, u0)

= lim sup
k→∞

d(uk, u0).

This is a contradiction. We obtain u0 = v0, then we have {xn} ∆-converges to a point of
F = argminX f ∩ argminX g. This completes the proof.
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