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Abstract
The purpose of this study is finding a common minimizer of two convex functions on a
geodesic space. The iterative schemes for this problem have Halpern iteration, contraction
projection method, CQ method and so on. To iterative a common minimizer by Mann
type iteration, we use properties of the resolvent in this study. In this paper, we show
fundamental properties of a CAT(1) space, our theorem and recent results.

1 Introduction

We know that Mann’s iterative scheme [10] is a very effective method to find a fixed point of a
nonexpansive mapping. By using this scheme, a large number of authors have proved various
kinds of theorems. Reich [13] proved a weak convergence theorem for Mann type iteration in
a Banach space. Takahashi and Tamura [12] proved weak convergence of an iteration gener-
ated by two nonexpansive mappings in a Banach space. Motivated by these results, researchers
began to investigate the Mann type scheme defined on geodesic spaces. Dhompongsa and Pa-
nyanak [3] proved A-convergence of an iteration generated by a nonexpansive mapping in a
CAT(0) space. Kimura and Nakagawa [7] proved A-convergence of an iteration generated by
two quasinonexpansive and A-demiclosed mappings in a CAT(1) space. We show the theorem
in [7].

Theorem 1.1. (Kimura and Nakagawa [7]) Let X be a complete CAT(1) space such that for
any u,v € X,d(u,v) < w/2. Let S and T be quasinonexpansive and A-demiclosed mappings

from X into itself with F(S)NF(T) # 0. Let {cw,},{Bn} and {v,} be sequences of [a,b] C |0, 1].
Define a sequence {x,} C X by the following recurrence formula: ©1 € X and

Up = (1 - ﬁn)xn 7 ﬁnsxna
Up = (1 - /Vn)xn s> ﬂ)/nTxnv
Tnt1 = (1 — ap)Un ® anvy,

forn € N. Then {x,} A-converges to a common fized point of S and T.

In this paper, the authors prove Theorem 3.1 based on Theorem 1.1 with the resolvent in a
complete CAT(1) space.
The resolvent for a convex function on a Hilbert space is defined as follows: Let f be a proper

lower semicontinuous convex function from a Hilbert space H into |—o0,00]. The resolvent J¢
of f is defined by

) 1
Jyz = argmin{f(y) + 5 ly - 2*}
yeH



for all z € X. We know that J; is a single-valued mapping from H to H. On the other hand,
the resolvent on a Hadamard space, a complete CAT(0) space, is proposed by Jost [4] and Mayer
[11]. Let X be an Hadamard space. Let f be a proper lower semicontinuous convex function
from a Hadamard space X into |—o0, 0c]. The resolvent Ry of f is defined by

. 1

Ry = aramin{f(y) + 5 d(y, )’}
yeX

for all x € X. We know that Ry is a single-valued mapping from X to X. We also know the

definition and some properties of the resolvent in a complete CAT(1) space [5, 6]. We show

them in preliminaries.

2 Preliminaries

Let X be a metric space. For z,y € X, a mapping c: [0,1] — X is called a geodesic if ¢ satisfies
c(0) = z,c(l) =y, and d(c(u), c(v)) = |u —v|

for every u,v € [0,{]. An image [z,y] of ¢ is called a geodesic segment joining x and y. If a
geodesic exists for every z,y € X, then we call X a geodesic space.

Let X be a geodesic space. For a triangle A(x,y, z) C X such that d(z,y)+d(y, z) +d(z,z) <
27, let a comparison triangle A(Z,#, 2) in two-dimensional unit sphere S? be such that each
corresponding edge has the same length as that of the original triangle. X is called a CAT(1)
space if for every x,y,z € X such that d(x,y) + d(y, z) + d(z,z) < 2w, every p,q € A(z,vy,2)
and their corresponding points p, g € A(Z,y, z) satisfy that

d(pv Q) S ng (ﬁa Q)v

where dg2 is the spherical metric on S2.

Let X be a CAT(1) space. For every z,y € X with d(z,y) < 7 and a € [0,1], if z € [z,y]
satisfies that d(y, z) = ad(x,y) and d(z, z) = (1—«a)d(x,y), then we denote z by z = az®(1—a)y.
A subset C' C X is called m-convex if axz @ (1 — o)y € C for every z,y € C with d(z,y) < 7 and
a € [0,1].

For every z,y, z € X with d(z,y)+d(y, z)+d(z,x) < 2m and « € [0, 1], the following inequality
holds [8]:

cosd(z,w)sind(y, z) > cosd(z,y)sin(ad(y, z)) + cosd(x, z) sin((1 — a)d(y, 2)),

where w = ay & (1 — a)z.

A CAT(1) space X is said to be admissible if every z,y € X satisfy that d(z,y) < m/2.

Let X be a CAT(1) space and let T' be a mapping from X to X such that the set F(T) =
{z € X : z = Tz} of fixed points of T is not empty. If d(Tz,p) < d(x,p) for every z € X and
p € F(T), then we call T' a quasinonexpansive mapping.

T is said to be strongly quasinonexpansive if T is a quasinonexpansive mapping,
and lim, o d(zpn,Tz,) = 0 whenever {z,} C X satisfies sup,cyd(zn,p) < 7/2 and
lim,, o0 (cosd(xy,,p)/ cosd(Tz,,p)) = 1 for every p € F(T).

We also define a strongly quasinonexpansive sequence. A sequence {7} of mappings from
X to X is called a strongly quasinonexpansive sequence if each T, is a quasinonexpansive
mapping, and lim,,_, d(2y,, Tnz,) = 0 whenever {z,} C X satisfies sup,,cy d(2y,, p) < m/2 and
lim,, o0 (cos d(2n, p)/ cos d(T,,xp, p)) = 1 for every p € (., F(T,); see [1].

Let X be a metric space. An element z € X is said to be an asymptotic center of {x,} C X
if

limsup d(z,,, z) = inf limsupd(z,, ).
n—00 z€X nooo



Moreover, {z,} A-converges to a A-limit z if z is the unique asymptotic center of any subse-
quences of {z,}.

Let X be a CAT(1) space and let T' be a mapping from X to X such that F(T') # (. T is said
to be A-demiclosed if z € F(T) whenever {z,} A-converges to z and lim,,_,~ d(z,,Tz,) = 0.

We also define a A-demiclosed sequence. A sequence {7,} of mappings from X to X
is called a A-demiclosed sequence if z € () _, F(T,) whenever {z,} A-converges to z and
limy, s 00 d(p, Thzy,) = 0; see [1].

Let X be a complete CAT(1) space and let C C X be a nonempty closed m-convex subset
such that d(z,C) = infycc d(z,y) < 7/2 for every x € X. Then for every x € X, there exists a
unique point xg € C satisfying

d(xz,zo) = inf d(x,y).
yeC

We define the metric projection Po from X onto C' by Pox = xg. We know that the metric
projection Pg is a strongly quasinonexpansive and A-demiclosed mapping such that F(Pg) = C
2, 9].

Let X be an admissible complete CAT(1) space. Let f be a proper lower semicontinuous
convex function from X into |—oo, cc]. The resolvent Ry of f is defined by

Ry = argmin{ f(y) + tand(y, z) sind(y, z)}
yeX

for all z € X [5]. We know that Ry is a single-valued mapping from X to X. We also
know that the resolvent Ry is strongly quasinonexpansive and A-demiclosed such that F/(Ry) =

argmianX f [57 6]
We introduce some lemmas and theorem used for our results.
Lemma 2.1. (Kimura and Sat6 [8]) Let X be a CAT(1) space. For every z,y,z € X with
d(z,y) +d(y,z) + d(z,x2) < 27 and « € [0, 1], the following inequality holds:
cosd(x,w)sind(y, z) > cosd(z,y) sin(ad(y, 2)) + cosd(zx, z) sin((1 — a)d(y, z)),

where w = ay @& (1 — a)z.
Lemma 2.2. (Kimura and Saté [9]) Let X be a CAT(1) space. For every x,y,z € X with
d(z,y) +d(y,z) +d(z,x) < 27 and « € [0, 1], the following inequality holds:

cosd(z,w) > acosd(x,y) + (1 — ) cosd(zx, z),

where w = ay & (1 — a)z.

Theorem 2.3. (Espinola and Fernandez-Leoén [2]) Let X be a complete CAT(1) space. Let {x,}
be a sequence in X. If r({z,}) < m/2, then the following hold:

(a) AC({zn}) consists of exactly one point;
(b) {zn} has a A-convergent subsequence.

Lemma 2.4. Let o be a real number in |—1,0] and {b,},{cn} real sequences in [o,1] and
liminf,, oo bncn, > 1. Then lim, oo by, = lim,, oo ¢, = 1.

Lemma 2.5. Let s be a real number in ]0,00[ and {b,},{cn} bounded real sequences such that
b, <0,s < ¢, and lim,, o by, /¢y, = 0. Then lim, o b, = 0.

Lemma 2.6. Let {b,},{c,} be bounded real sequences such that lim, oo (b, — ¢,) = 0. Then
liminf,, .o b, = liminf, . ¢,.



3  Main result

To prove this theorem, we employ the technique proposed in [7].

Theorem 3.1. Let X be an admissible complete CAT(1) space. Let {\,} and {u,} be sequences
of positive real numbers such that inf, A\, > 0 and inf,, u, > 0. Let f and g be proper lower
semicontinuous convex functions from X into |—o00,00] such that F' = argminy f Nargminy g #
0. Let Ry, s and R,,,, be the resolvents of N\, f and p,g, respectively. For a given real number
a €]0,%], let {an}, {Bn} and {yn} are sequences in [a,1 —a]. Let {z,} be a sequence in X
defined by x1 € X and

Up = Bnn ® (1 — Bn)Ra, fTn,

Un = YnTn D (]- - ’Yn)Rungxny

Tpt1 = Qi @ (1 — ap)vy,

for alln € N. Then {x,} A-converges to a point of F.
Proof. Let z € F. By Lemma 2.2, we have
cosd(uy, z) > By cosd(xy, z) + (1 — By) cosd(Ry,, tZn, 2)
> cosd(xp, 2).

Similarly, we have
cos d(vy, z) > cosd(zy, 2).

By these inequalities, we obtain

cosd(Tpt1,2) > ap cosd(un, 2) + (1 — ay,) cosd(vy, 2)

> cosd(xp, 2).

Thus, we have d(x,,41, 2) < d(x,,2) for all n € N and there exists
T
D nhm d(xn,2) <d(z1,2) < 5"

By Lemma 2.1, we have

cos d(tn, z) sind(zp, Ry, fTn)
> cos d(xy, 2) sin B d(xn Ry, ) + cosd(Ry, Tn, 2) sin(1 — By )d(xr, R, f2n)
d(l’n, R)\nfxn) (2611 - 1)d(xn7 R/\nfxn>

> 2cosd(xy,, z)sin 5 cos 5 : (1)

Similarly, we get

cos d(vy,, z) sind(xy, Ry, g%n)
> cosd(zy, z) siny,d(x, R, fTn) + cosd(Ry,, gTn, 2) sin(l — v, )d(zy, Ry, g2n)
d(xy, Ry, g%n) o (2vn — D)d(zp, Ry, gn)
2 2 '

Let dp, = d(zn, 2), fn = d(xn, R, f2n)/2 and g, = d(zy, Ry, g25)/2 for all n € N.
If f,, # 0 and g,, = 0, then we have v,, = z,,. From (1), (2) and Lemma 2.2, we have

(2)

> 2cosd(xy, z) sin

2 cosdp418in f,, cos f,, = cosd,418in2f,
>y cosd(uy, z)sin2f, + (1 — ay,) cosd(vy, z) sin 2 f,
> 2a, cos dy, sin f, cos(28, — 1) fr + 2(1 — o) cos d, sin fy, cos fi,



Dividing by 2sin f,, > 0, we obtain
oS dy,+1 €OS fr, > ay, cosdy, cos(28, — 1) fr, + (1 — ) cosdy, cos fi. (3)
If f, =0 and g, # 0, then we have u,, = x,,. Similarly, we have
oS dy,+1 COS Gr, > iy cOS dy, €OS g, + (1 — avy) cos dy, cos(27y, — 1) gn. (4)

If f, # 0 and g,, # 0, then from (1), (2) and Lemma 2.2, we have

coS dy 41 Sin 2 f, sin 2g,,
> o, cosd(up, z) sin 2 f,, sin 2g,, + (1 — a,) cos d(vy,, 2) sin 2 f,, sin 2¢,,
> 4cosd, sin fy, sin g, (o, cos(26, — 1) fn cos gn + (1 — o) cos fr, cos(2v, — 1)gn)-

Dividing by 4sin f, sin g, > 0, we have

€0S dyp+1 €OS fy, COS g,

>y cosdy cos(28, — 1) fr cos gn + (1 — ) cosd,y, cos fr, cos(2y, — 1)gn). (D)

If f, = 0 and g, = 0, then we also have the inequality (5), and the inequality (5) can be
reduced to the inequality (3), (4) for each case. From inequality (5), we have

€, COS [, o, €1, COS Gp, 1—a,
— _ > 1’
(1 —ap)cos(26, — ) fn 1—ay, ay, cos(29, — 1)gn, o -

where €, = cosd,,+1/cosd,, for n € N. It follows that lim, ,~ €, = cos D/cos D = 1. Since
{an} C[a,1 —a] for all n € N, we obtain

L. cos fpn o COS gn, 1—a,
1 f — — >1
lnnl)gé <(1 - an) COS(2BH - 1)fn 1- an> (an COS(2’7n - 1)gn Qp > - (6)

We show that there exists ng € N such that for all n > ng,the following hold:

cos fpn Q,

1
_Z < — <1 7
27 (I1—ap)cos(2B, — V) fn 1—a, — (™)
and ) )
L COS gn, l-ay <1 (8)
2 7 aycos(2y, — 1gn o,

We show the second inequality of (7). Since {f,} C [a,1 — a] for all n € N, we obtain

cos fn oy, 1 oy,

— < — =1.
(I—ap)cos(2Bn,—1)fn, l1—an ~ 1—a, 1—a,

Similarly, we show the second inequality of (8). Next, we show the first inequality of (7). Let

cos [ Qay,
(1—ap)cos(2Bn —1)fn  1—an
We assume that the first inequality of (7) does not hold. Then we can get a subsequence
{on;} C{on} such that o, < —1/2 and lim;_, 0, = 0 < —1/2. Since {a, }, {7} C [a,1 — a]
and {gn} C [0,7/4], we get {gn} is bounded. Let {0, } C {0} C {6} such that {6,, }
converges to § € R. From the inequality (6), we have

COS g, 1—a,

d 6, — _
an " (679 COS(ZfYn - 1)971 Oy

Op —

o0 = lim o,, 0,, >liminfo,0, > 1.
j—oo J 7 n— o0



Therefore, we may assume that Gnij < 0 for all j € N. Since {fn},{9»} C [0,7/4] and
{ﬁn}, {%} C [a, 1-— a], we have

V2 cos fn

21 —a) = (1 —an)cos(2Bn — 1) fn 9)

0<

IN

and
V2 - COS g,

2(1—a) = ancos(2y, —1)gn (10)

0<

Let p € R such that

2l—a)’'1—-a (11)

{ V2 2a}
0 < p < min .

From the inequalities (9), (10), we have

Oénij 1-— anij

p— < om,, <0 and p— < b, <0. (12)

1-— Qn,, n;,

From the inequalities (11), (12), we have

Then, as 7 — 0o, we obtain

2
1§09§p(p1a)+1<1.
—a

This is a contradiction. Similarly, we obtain the left inequality of (8). From the inequalities
(7), (8) and Lemma 2.4, we have

. cos fn o, . COS gn 1—a,
lim — = lim —
n—oo \ (1 —ay)cos(268, — Dfn 1—an n—o00 \ v, cos(2y, — 1)gn o,
Hence, we have
Ii COS fn B COS(Q/Bn B 1)fn
im

n—oo (1 — ) cos(26, — 1) fn =0

By Lemma 2.5, we get
li_)m (cos fr, — cos(2B, — 1) fn) = 0.

By Lemma 2.6, we have

lim inf cos f,, = liminf cos(28,, — 1) f,, = liminf cos |23,, — 1] fn.
n— 00 n— 00 n—>00



Hence, we obtain

limsup f, = limsup (|26, — 1| f») < limsup |28, — 1|limsup f,.
n— oo

n— o0 n— oo n— oo

Furthermore, we get

n— oo n— oo n—o0

linl)inf(l — 128, — 1|) limsup f, = <1 — limsup |28,, — 1|> limsup f,, <0.

Since {f,} C [a,1—a] for all n € N, we get liminf,, (1 — |28, —1]) > 0 and thus
limsup,,_, . fn = 0. It implies that d(z,, Ry, fz») — 0. Similarly, we get d(x,,, Ry, g%n) — 0.

Next, we show {z,} A-converges to a point of F. Let {x,,} be a subsequence of {z,}.
Since r({z,}) < D < m/2 and Theorem 2.3(a), there exists a unique asymptotic center x
of {xn,}. Since r({zn,}) < /2 and Theorem 2.3(b), there exists a subsequence {z,, } of
{zn,} such that {z, } A-converges to z; € X. Moreover, since d(xnkl,R,\nklf:cnkl) — 0,
d(Tny, » Rﬂnklgx”kz) — 0 and {R,\nkl i {R#nklg} are A-demiclosed sequence, we obtain x(, € F' =
argminy f Nargminy g. If 29 # x(,, by Theorem 2.3(a) and the uniqueness of the asymptotic
centers, we get

limsup d(z, , o) < limsup d(x,, , z()
k— o0 k— o0

= lim d(zp, ()

— 11 /
= limsup d(zy,, , ()
l—o00

< limsup d(zy,, , To)
l—o0

< limsupd(z,, , xo).
k—o00
This is a contradiction. Hence, we have zy € F = argminy f Nargminy g. Let {ux}, {vi}
be subsequences of {x,}, ug € AC({ux}) and vg € AC({vr}). If ug # vp, then since uy ¢
AC({vr}),vo ¢ AC({ur}) and by Theorem 2.3(a), we have

lim sup d(ug, uo) < limsup d(ug, vo)
k—o00 k—o0

= lim d(x,,vp)
n— oo

= lim sup d(vg, vo)
k—o0

< limsup d(vg, ug)
k—o0

= nh_)n;o d(zp, ug)

= lim sup d(ug, ug).
k— o0
This is a contradiction. We obtain uyg = vg, then we have {z,} A-converges to a point of
F = argminy f Nargminy g. This completes the proof. O
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