1 q-超幾何関数の拡張 $\mathcal{F}_{N,M}$

1.1 q-超幾何関数

q-超幾何関数は Gauss の超幾何関数の q 類似として 19 世紀に Heine によって導入された。Gauss の超幾何関数とは次のような式である

$$2F_1\left(\begin{array}{c} \alpha, \beta \\ \gamma \end{array}; x \right) = \sum_{n=0}^{\infty} \frac{(\alpha)_n(\beta)_n}{(\gamma)_n n!} x^n, \ |x| < 1. \quad (1)$$

ここで, $(\alpha)_n = \alpha(\alpha + 1)(\alpha + 2) \cdots (\alpha + n - 1)$ を表す。級数 (1) の q 類似として定義される q-超幾何関数は次のような式である [1] [2]

$$2\phi_1\left(\begin{array}{c} a, b \\ c \end{array}; x \right) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n(q)_n} x^n, \ |x| < 1. \quad (2)$$

ここで, $(\alpha)_n = (1-a)(1-qa) \cdots (1-q^{n-1}a) = \frac{(\alpha)_\infty}{(q^\alpha a)_\infty}$ を表す。ここでは, q-超幾何関数 (2) の重要な性質である Heine の公式と q-積分表示を紹介する。Heine の公式とは次のような等式である。

Proposition 1.1（Heine の公式） (2) は, 次の等式を満たす

$$2\phi_1\left(\begin{array}{c} a, b \\ c \end{array}; x \right) = \frac{(b)_\infty(ax)_\infty}{(c)_\infty(x)_\infty} 2\phi_1\left(\begin{array}{c} \xi, x \\ ax \end{array}; b \right). \quad (3)$$

この証明は, 二項定理の q 類似である q-二項定理と, 和の順序交換によって示される。ここで q-二項定理とは次のようなものである

Theorem 1.1（q-二項定理） 次の等式が成り立つ

$$\frac{(az)_\infty}{(z)_\infty} = \sum_{m \geq 0} \frac{(a)_m}{(c)_m} z^m. \quad (4)$$

次に, (2) の積分表示について述べる。定積分の q 類似である Jackson 積分は次のように定義される。

Definition 1.1（Jackson 積分）

$$\int_0^c f(t) dt = c(1-q) \sum_{n \geq 0} f(cq^n)q^n. \quad (5)$$
\(q \to 1 \) のとき、この和はリーマン積分に移行する。これを用いると (3) は、次のような積分表示として解釈される。

Proposition 1.2（\(q \)-超幾何関数の積分表示） (3) において、\(a = q^\alpha, b = q^\beta, c = q^\gamma \) と代入すると、(3) は次のような式になる

\[
2\varphi_1\left(\frac{q^\alpha, q^\beta}{q^\gamma}; x \right) = \frac{\Gamma_q(\gamma)}{\Gamma_q(\beta) \Gamma_q(\gamma - \beta)} \int_0^1 t^{\beta-1} (qt_0)^{\alpha} (qt_0)^{\gamma} (xt_0)^{\gamma} dt_0.
\]

ここで、\(\Gamma_q(x) = \frac{(q)_x}{(q)_x^{-1}} \) (1 \(q \) \(x \)) を表す。

1.2 級数 \(\mathcal{F}_{N,M} \) の定義

関数 (2) の拡張式 \(\mathcal{F}_{N,M} \) を、次のように定義する

\[
\mathcal{F}_{N,M} \left(\{ a_i \}, \{ b_j \}; \{ y_i \} \right) = \sum_{m=0}^\infty \prod_{j=1}^N (a_j)^{m_j} \prod_{i=1}^M (b_i)^{m_i} \prod_{i=1}^N (a_i)^{m_i}.
\]

ここで、\(|m| = \sum_{i=1}^N m_i, (a)_n = (1-a)(1-qa)\cdots(1-q^{n-1}a) = \frac{(a)_\infty}{(qa)_\infty} \)。（\(M, N \) = (1, 1) のとき、式 (7) は式 (2) に相等する。

Proposition 1.3（Heine の公式の拡張） (7) は、次の等式を満たす。

\[
\mathcal{F}_{M,N} \left(\{ a_i \}, \{ b_j \}; \{ y_i \} \right) = \mathcal{F}_{M,N} \left(\{ a_i \}, \{ b_j \}; \{ x_i \} \right).
\]

この証明は、Proposition 1.1 と同様に、Theorem 1.1 と順の順序交換によって示される。 (8) により

Proposition 1.4（\(\mathcal{F}_{N,M} \) の積分表示） (8) に対して、\(a_i = q^{\alpha_i}, b_j = q^{\beta_j}, y_j = q^{\gamma_j} \) を代入すると、(8) は次のような式になる

\[
\mathcal{F}_{N,M} \left(\{ q^{\alpha_i} \}, \{ q^{\beta_j} \}; \{ x_i \} \right) = \prod_{j=1}^N \Gamma_q(\beta_j + \gamma_j) \prod_{j=1}^N \int_0^1 dw_j t_j^{\gamma_j} (q_0 t_j)^{\gamma_j} (x_i t_j)^{\gamma_j}.
\]

2 \(\mathcal{F}_{N,M-1} \) を特殊解に持つモノドロミー保存変形

関数 (7) は \(M = N = 1 \) のとき \(2\varphi_1 \) に等しく、これで表される特殊解を持つ方程式として \(q \)-PVI 関数 [3] が知られている。また、その他変数化して \(q \)-Garnier 系 [7] [8] や \(q \)-DS 階層の相似簡略から得られる方程式系 [9] が知られており、それそれぞれ \(q \)-Appell-Lauricella 関数 \(\varphi_D \)、一般 \(q \)-超幾何関数 \(N+1 \varphi_N \) で表される特殊解を持つ。定義した関数 (7) は \(N = 1 \) のとき \(q \)-Appell-Lauricella 関数 \(\varphi_D \) に等しく、\(M = 1 \) のとき一般 \(q \)-超幾何関数 \(N+1 \varphi_N \) に等しい。我々の目的は、関数 (7) で表される特
2.1 \(\mathcal{F}_{N,M} \) が満たすパフ系

まず，\(\mathcal{F}_{N,M} \) の積分表示からパフ系を求める。(9) における被積分関数を

\[
\Phi(\{u_j\}_{j=1}^N) = \prod_{i=1}^M \left(\frac{x_i a_i u_N}{x_i u_N} \right) \prod_{j=1}^N \left(\frac{q u_j u_{j-1}}{b_j u_j u_{j-1}} \right) u_j^2 (u_0 = 1, u_N = \prod_{j=1}^N u_j), \tag{10}
\]

とおくと

\[
\Psi_0 = \langle \Phi p_0 \rangle, \quad \Psi_{j,i} = \langle \Phi p_{j,i} \rangle \quad (1 \leq j \leq N, 1 \leq i \leq M), \tag{11}
\]

がパフ系の解の基底になる ([4] [5] など). ここで \(\langle f(\{u_j\}) \rangle = \sum_{n_j \in \mathbb{Z}} f(q^{n_j}) \) を表し, \(p_0 = 1, p_{j,i} = \prod_{k=1}^{i-1} \left(\frac{1-z_k u_{k+1}}{1-a_k x_{k+1} u_{k+1}} \right) \) である。互換 \(\sigma_i = \{x_i \leftrightarrow x_{i+1}, a_i \leftrightarrow a_{i+1}\} \) とおくと, 次が成立立つ

\[
\sigma_i \left[\begin{array}{c} p_{j,i} \\ p_{j,i+1} \end{array} \right] = \frac{1}{x_i - a_i x_{i+1}} \begin{bmatrix} (1-a_i)x_i & a_i x_i - a_{i+1}x_{i+1} \\ x_i - x_{i+1} & (1-a_{i+1})x_{i+1} \end{bmatrix} \begin{bmatrix} p_{j,i} \\ p_{j,i+1} \end{bmatrix}, \tag{12}
\]

\[
\sigma_i(p_{j,k}) = p_{j,k} (k \neq i, i+1). \tag{13}
\]

また, 変数 \(x_M \) に対する \(q \) シフト \(T_{x_M}(f(x_M)) = f(q x_M) \) に対して, 次が成り立つ. 互換の積 \(\rho = \sigma_M \cdots \sigma_1 \) とおくと,

\[
T_{x_M}(\Psi_0) = *\rho(\Psi_0) + *\rho(\Psi_{1,1}) + \cdots + *\rho(\Psi_{N,1}),
\]

\[
T_{x_M}(\Psi_{j,i}) = \rho(\Psi_{j,i+1}) (i \neq M),
\]

\[
T_{x_M}(\Psi_{j,M}) = *\rho(\Psi_0) + *\rho(\Psi_{1,1}) + *\rho(\Psi_{2,1}) + \cdots + *\rho(\Psi_{N,1}). \tag{14}
\]

* は \(x_M \) に関する有理関数を表す. ここで, \(\nabla \Psi = [\Psi_0, \Psi_{1,1}, \Psi_{1,2}, \cdots, \Psi_{N,M}] \) とおくと, このパフ系は次のように表すことができる

\[
T_{x_M} \nabla \Psi = \nabla A, \quad A = R_{M-1} R_{M-2} \cdots R_1 Q_M. \tag{15}
\]

ここで, 列行 \(R_i, Q_M \) は \((MN+1) \) 次正方形行列である. 他変数に対する \(q \) シフトは, (14) に対して置換 \(\sigma_i \) を用いることによって求められる.

2.2 \(\mathcal{F}_{N,M-1} \) が満たすモノドロミー保存変形

(11) の満たすパフ系の係数行列はその作り方から両立条件 \(A_j(T_j A_i) = A_i(T_j A_j) \) を満たす. このことから, それを特殊化して簡略化したものを, あるモノドロミー保存変形のラックス形式と解釈して目標の方程式を得る.

Definition 2.1 行列 \(A = A(z,t), B = B(z,t) \) を

\[
A = X_1 X_2^{-1} \cdots X_{M-1} X_{M}^{-1} d, \tag{16a}
\]

\[
B = X_2 X_1^{-1} X_{M-1} (z/q) X_{M}^{-1} d'. \tag{16b}
\]
とする。ただし，d, d' は対角行列，$X_i = X_i(z, t) = \begin{bmatrix} u_1^{(i)} & 1 \\ u_2^{(i)} & \ddots \\ \vdots & \ddots \\ u_N^{(i)} & \end{bmatrix}$ とする。このとき

$$A \cdot B(qz) = B \cdot A(qt),$$

(17)

によって定まる方程式系を考える。この方程式系は $2(M - 1)N$ 個の変数を持つ。

Remark 2.1 (16) (17) によって定まる方程式系は，未知関数 $\{u_j^{(i)}\}$ の双有理変換の合成で定まる。

Remark 2.2 $N = 1$ の場合，(16) (17) で定まる方程式系は q-Garnier 系 [7] [8] に相当する [6]。

(16) (17) で定まる方程式系に対して，次のことが成り立つ。

Theorem 2.1 (17) で定義されるモノドロミー保存変形は，$\mathcal{F}_{N,M-1}$ で表される解を持つ。

証明の概要を述べる。 (15) に対して，あるパラメーターを特殊化すると，パラ系の未知関数 $\Psi_0, \Psi_{j,M}$ のうち $\Psi_{j,M}$ のみが x_M に依存するようになる。x_M 以外の未知関数を Ψ_0 の係数に読み替えて，$\Psi_{j,M} / \Psi_0 (i \neq M)$ を x_M 以外の変数に依存する関数として $r_{j,i}$ とおくと，式 (15) は次のように表せる

$$T_{x_M} \widetilde{\Psi} = \Psi X'_1 X'_2 \cdots X'_{2M-1} X'_{2M} d''.$$

(18)

ここで $\Psi = [\psi_0, \psi_{1,M}, \psi_{2,M}, \cdots, \psi_{N,M}]$ とおく。 d'' は対角行列，$X'_i = X'_i(z, t) = \begin{bmatrix} u'_1^{(i)} & 1 \\ u'_2^{(i)} & \ddots \\ \vdots & \ddots \\ u'_N^{(i)} & \end{bmatrix}$ を表し，$u'_j^{(i)}$ は $\{r_{j,i}\}$ の有理関数で表される。

これを (16) を見比べて，結果を得る。

参考文献

