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概要

リー群 G による多様体 X の軌道分解や X 上の G 不変な超関数の空間は表現論的に X を理

解する一つの手がかりになると考えられる。また Gと X の複素化をそれぞれ GC と XC とした

とき GC によるXC の軌道分解は D加群の理論よりX 上の G不変な超関数の空間に関する情報

を与える。これを踏まえ今回の講演では X 上の G軌道の個数は有限だが XC 上の GC 軌道が無

限となる系列が存在することに幾何学的手法と表現論的手法の二通りの証明を与える。

1 Introduction

Let G be a real reductive Lie group (for example, general linear group GL(n,R)) and H a

closed subgroup of G. Then T. Kobayashi and T. Oshima established the criterion of finite-

multiplicity property for the regular representation on G/H.

Fact 1.1 ([7, Thm. A]). Suppose that G and H are defined algebraically over R. Then the

following two conditions on the pair (G,H) are equivalent:

(i) dimHomG(π,C
∞(G/H, τ)) < ∞ for any (π, τ) ∈ Ĝsmooth × Ĥalg,

(ii) G/H is real spherical.

Here Ĝsmooth denotes the set of equivalence classes of irreducible smooth admissible Fréchet

representations of G with moderate growth (see [12] for the definition of a smooth admissible

Fréchet representation with moderate growth), and Ĥalg that of algebraic irreducible finite-

dimensional representations of H. Given τ ∈ Ĥalg, we write C∞(G/H, τ) for the Fréchet space

of smooth sections of the G-homogeneous vector bundle over G/H associated to τ , namely,

the induced representation of G induced from a representation τ of H. The terminology real

sphericity was introduced by Kobayashi [5] in his study of a broader framework for global analysis

on homogeneous spaces than the usual (e.g., reductive symmetric spaces).

Definition 1.2. A homogeneous space G/H is real spherical if a minimal parabolic subgroup

P of G has an open orbit on G/H.

Remark 1.3. (1) In the case G = GL(n,R), a minimal parabolic subgroup P of G is given by

the non-singular upper triangular matrices.

(2) G/H is real spherical if and only if the number #(H\G/P ) of H-orbits on G/P is infinite



[1]. This is a consequence of the rank one reduction of T. Matsuki [9] and the classification

of real spherical varieties in the case of real rank one by B. Kimelfeld [3].

Let GC be the complexification of G, that is, GC is a complex Lie group which contains G as

a closed Lie subgroup and its Lie algebra gC is equal to g ⊗R C where g is a Lie algebra of G

(for example, GC = GL(n,C) in the case G = GL(n,R)).
By finding an upper and lower estimate of the dimensions of HomG(π,C

∞(G/H, τ)),

Kobayashi and Oshima also established the criterion of the uniform boundedness of the

multiplicities for induced representations.

Fact 1.4 ([7, Thm. B]). Suppose that G and H are defined algebraically over R. Then the

following two conditions on the pair (G,H) are equivalent:

(i) sup
τ∈Ĥalg

sup
π∈Ĝsmooth

1

dim τ
dimHomG(π,C

∞(G/H, τ)) < ∞,

(ii) GC/HC is spherical.

Here we say that a homogeneous space GC/HC is spherical if a Borel subgroup B of GC has

an open orbit on GC/HC.

Remark 1.5. (1) In the case that GC is the general linear group GL(n,C) over C, a Borel

subgroup B of GC is given by the non-singular upper triangular matrices.

(2) GC/HC is spherical if and only if #(HC\GC/B) < ∞ holds [2, 11]. This also follows from

the argument in [9].

Moreover, we proved in [10] the following bounded multiplicity property.

Fact 1.6 ([10]). Suppose that #(HC\GC/PC) < ∞. Then we have

sup
τ∈Ĥf

sup
η∈P̂f

1

dim η · dim τ
dimHomG(C

∞(G/P, η), C∞(G/H, τ)) < ∞.

Here P̂f denotes the set of equivalence classes of irreducible finite dimensional representations

of P .

Remark 1.7. (1) In general, #(HC\GC/PC) < ∞ is weaker condition on the pair (G,H) than

#(HC\GC/B) < ∞ when PC is not a Borel subgroup B of GC.

(2) In [10], it is proved that Fact 1.6 is also true if we replace a minimal parabolic subgroup P

by a general parabolic subgroup Q of G.

(3) In Fact 1.6, individual terms are finite by Fact 1.1. Moreover the supremum of these terms

is also finite if PC is a Borel subgroup B of GC by the proof of Fact 1.4 in [7] (The finiteness

of supremum is also true if we replace Ĥalg by Ĥf in Fact 1.4).



2 Main Theorem

As we have seen in Section 1, the orbit decomposition of H on G/P and its complexification

have information of harmonic analysis on G/H. In particular, the finiteness of the number of

H-orbits on G/P , or HC-orbits on GC/B characterizes the finite/bounded multiplicity property

of the regular representation on G/H. Moreover #(HC\GC/PC) < ∞ also implies bounded

multiplicity property. Therefore we want to know what happens in the intermediate case, namely,

the case that #(H\G/P ) < ∞ holds although #(HC\GC/PC) < ∞ does not hold. While there

are many pairs (G,H) satisfying #(H\G/P ) < ∞ and #(HC\GC/B) = ∞ (for example, see [6]),

it is not easy to construct examples that #(H\G/P ) < ∞ holds although #(HC\GC/PC) < ∞
does not hold. As a first step in the study of the intermediate case, we give examples that the

number of H-orbits on G/P is finite but the number of HC-orbits on GC/PC is infinite.

Theorem 2.1. For a real reductive Lie group G without compact factors, the following three

conditions are equivalent:

(i) l is abelian,

(ii) #(NC\GC/PC) < ∞,

(iii) GC/NC is spherical,

where P is a minimal parabolic subgroup of G and P = LN is its Levi decomposition.

Remark 2.2. (1) For any real reductive Lie group, we have #(N\G/P ) < ∞ by the Bruhat

decomposition (for example, see [4, Thm. 7.40]). Therefore Theorem 2.1 implies that the

number of N -orbits on G/P is finite but the number of NC-orbits on GC/PC is infinite if l

is not abelian.

(2) In Fact 1.4 and Theorem 2.1, we consider the orbit decompositions of HC on GC/B and

GC/PC, respectively. Note that l is abelian if and only if PC = B holds.

(3) Let G be the special indefinite unitary group SU(1, n). Then it is pointed out that

#(NC\GC/PC) = ∞ holds if n ≥ 3 by Matsuki [9, Remark 7].

It is obvious that (i) and (iii) are equivalent by the Bruhat decomposition and that (iii) implies

(ii) by (2) of Remark 1.5. Therefore, it is sufficient to prove that the implication (ii) ⇒ (i) is

true for Theorem 2.1. We give two proofs of this claim. One is a representation theoretic proof

and the other is a geometric proof.

Sketch of a geometric proof. By the generalized Bruhat decomposition, we have

GC =
⨿

w∈W/WL

BwPC

where W and WL are Weyl groups of GC and LC. Because NC ⊂ B, NC acts on BwPC/PC

for any w ∈ W/WL. If l is not abelian and G has no compact factors, we can show that



there exists w0 ∈ W/WL such that the dimension of every NC-orbit on Bw0PC/PC is smaller

than dimBw0PC/PC. This implies #(NC\Bw0PC/PC) = ∞, in particular, #(NC\GCPC) = ∞
holds.

Sketch of a representation theoretic proof. By Fact 1.6, it is sufficient to prove the following

proposition.

Proposition 2.3. Suppose that G has no compact factors and l is not abelian. Then there exists

a sequence {ηk}k∈N of one-dimensional representations of P satisfying

lim
k→∞

dimHomG(C
∞(G/P, ηk), C

∞(G/N)) = ∞.

We prove this proposition by constructing concrete intertwining operators, which are differ-

ential operators in the sense of [8, Def. 2.1]. Let R : g → EndC(C
∞(G)) be a differential of the

right regular representation on C∞(G) of G. In other words, for X ∈ g and f ∈ C∞(G), define

R(X)f ∈ C∞(G) by

(R(X)f)(x) :=
d

dt
f(xetX)

∣∣∣∣
t=0

where x ∈ G. Then, R extends to : U(g) → EndC(C
∞(G)) where U(g) is the universal enveloping

algebra of g. If G has no compact factors and l is not abelian, we can take an element Y ∈ gC

satisfying the following property.

Let Vk be a subrepresentation of L on U(g) is generated by Y k for any k ∈ N. Then there exists

a one-dimensional representation ηk of P such that R(Vk) ⊂ HomG(C
∞(G/P, ηk), C

∞(G/N))

and limk→∞ dimR(Vk) = ∞ hold.

Here we abbreviate R(Vk) ⊂ HomG(C
∞(G/P, ηk), C

∞(G/N)) because the image of the restric-

tion of R(Vk) on C∞(G/P, ηk) ⊂ C∞(G) is contained in C∞(G/N) although R(Vk) is a priori

contained in EndC(C
∞(G)). This implies Proposition 2.3.
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