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1 Introduction

Let G be a real reductive Lie group (for example, general linear group GL(n,R)) and H a
closed subgroup of G. Then T. Kobayashi and T. Oshima established the criterion of finite-
multiplicity property for the regular representation on G/H.

Fact 1.1 ([7, Thm. A]). Suppose that G and H are defined algebraically over R. Then the

following two conditions on the pair (G, H) are equivalent:

(i) dim Homg(m,C=(G/H,T)) < oo for any (m,7) € Gamooth X Halg,
(ii) G/H is real spherical.

Here ésmooth denotes the set of equivalence classes of irreducible smooth admissible Fréchet
representations of G with moderate growth (see [12] for the definition of a smooth admissible
Fréchet representation with moderate growth), and ﬁalg that of algebraic irreducible finite-
dimensional representations of H. Given 7 € H, alg, We write C>°(G/H, 7) for the Fréchet space
of smooth sections of the G-homogeneous vector bundle over G/H associated to 7, namely,
the induced representation of G induced from a representation 7 of H. The terminology real
sphericity was introduced by Kobayashi [5] in his study of a broader framework for global analysis

on homogeneous spaces than the usual (e.g., reductive symmetric spaces).

Definition 1.2. A homogeneous space G/H is real spherical if a minimal parabolic subgroup
P of G has an open orbit on G/H.

Remark 1.3. (1) In the case G = GL(n,R), a minimal parabolic subgroup P of G is given by
the non-singular upper triangular matrices.
(2) G/H is real spherical if and only if the number #(H\G/P) of H-orbits on G/P is infinite



[1]. This is a consequence of the rank one reduction of T. Matsuki [9] and the classification

of real spherical varieties in the case of real rank one by B. Kimelfeld [3].

Let G¢ be the complexification of GG, that is, G¢ is a complex Lie group which contains G as
a closed Lie subgroup and its Lie algebra gc¢ is equal to g ®g C where g is a Lie algebra of G
(for example, Gc = GL(n,C) in the case G = GL(n,R)).

By finding an upper and lower estimate of the dimensions of Homg(w,C*(G/H,T)),
Kobayashi and Oshima also established the criterion of the uniform boundedness of the

multiplicities for induced representations.

Fact 1.4 ([7, Thm. B]). Suppose that G and H are defined algebraically over R. Then the

following two conditions on the pair (G, H) are equivalent:

1
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(i) sup  sup dim Homg (7, C*°(G/H, 1)) < o0,
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(ii) Gc¢/Hc is spherical.

Here we say that a homogeneous space G¢/Hg is spherical if a Borel subgroup B of G¢ has

an open orbit on G¢/Hc.

Remark 1.5. (1) In the case that G¢ is the general linear group GL(n,C) over C, a Borel
subgroup B of G¢ is given by the non-singular upper triangular matrices.
(2) G¢/Hc is spherical if and only if #(Hc\Gc/B) < oo holds [2, 11]. This also follows from

the argument in [9].
Moreover, we proved in [10] the following bounded multiplicity property.

Fact 1.6 ([10]). Suppose that #(Hc\Gc/Pc) < co. Then we have

sup sup dim Homq (C*(G/P,n),C*(G/H,T)) < 0.

rels nebr dimn - dim T

Here P; denotes the set of equivalence classes of irreducible finite dimensional representations
of P.

Remark 1.7. (1) In general, #(Hc\Gc/Pc) < oo is weaker condition on the pair (G, H) than
#(Hc\Gc/B) < oo when Pr is not a Borel subgroup B of Gc.

(2) In [10], it is proved that Fact 1.6 is also true if we replace a minimal parabolic subgroup P
by a general parabolic subgroup @ of G.

(3) In Fact 1.6, individual terms are finite by Fact 1.1. Moreover the supremum of these terms
is also finite if Pc is a Borel subgroup B of G¢ by the proof of Fact 1.4 in [7] (The finiteness

of supremum is also true if we replace H, alg Dy H; in Fact 1.4).



2 Main Theorem

As we have seen in Section 1, the orbit decomposition of H on G/P and its complexification
have information of harmonic analysis on G/H. In particular, the finiteness of the number of
H-orbits on G/P, or Hc-orbits on G¢/B characterizes the finite/bounded multiplicity property
of the regular representation on G/H. Moreover #(Hc\Gc/Pc) < oo also implies bounded
multiplicity property. Therefore we want to know what happens in the intermediate case, namely,
the case that #(H\G/P) < oo holds although #(Hc\Gc/Pc) < oo does not hold. While there
are many pairs (G, H) satisfying #(H\G/P) < oo and #(Hc\Gc/B) = oo (for example, see [6]),
it is not easy to construct examples that #(H\G/P) < oo holds although #(Hc\Gc/Pc) < oo
does not hold. As a first step in the study of the intermediate case, we give examples that the

number of H-orbits on G/ P is finite but the number of Hc-orbits on G¢/Pc is infinite.

Theorem 2.1. For a real reductive Lie group G without compact factors, the following three

conditions are equivalent:

(i) lis abelian,
(ii) #(Ne\Ge/Fe) < oo,
(iii) G¢/Nc is spherical,

where P is a minimal parabolic subgroup of G and P = LN is its Levi decomposition.

Remark 2.2. (1) For any real reductive Lie group, we have #(N\G/P) < oo by the Bruhat
decomposition (for example, see [4, Thm. 7.40]). Therefore Theorem 2.1 implies that the
number of N-orbits on G/P is finite but the number of N¢-orbits on G¢/Pc is infinite if [
is not abelian.

(2) In Fact 1.4 and Theorem 2.1, we consider the orbit decompositions of H¢ on G¢/B and
Gc¢/ Pc, respectively. Note that [ is abelian if and only if Pc = B holds.

(3) Let G be the special indefinite unitary group SU(1,n). Then it is pointed out that
#(Nc\Gc/Pc) = oo holds if n > 3 by Matsuki [9, Remark 7].

It is obvious that (i) and (iii) are equivalent by the Bruhat decomposition and that (iii) implies
(ii) by (2) of Remark 1.5. Therefore, it is sufficient to prove that the implication (ii) = (i) is
true for Theorem 2.1. We give two proofs of this claim. One is a representation theoretic proof

and the other is a geometric proof.

Sketch of a geometric proof. By the generalized Bruhat decomposition, we have
Ge= [] Buwk
weW /Wy,
where W and W, are Weyl groups of G¢ and L¢. Because N C B, N¢ acts on BwP¢/Pc

for any w € W/Wp. If [ is not abelian and G has no compact factors, we can show that



there exists wyg € W/Wp, such that the dimension of every Nc-orbit on BwyPg/Pc is smaller
than dim BwgPc/Pc. This implies #(N¢\BwoPc/Pc) = oo, in particular, #(Nc\GcFPc) = oo
holds. ]

Sketch of a representation theoretic proof. By Fact 1.6, it is sufficient to prove the following

proposition.

Proposition 2.3. Suppose that G has no compact factors and | is not abelian. Then there exists

a sequence {ni}ren of one-dimensional representations of P satisfying

lim dim Homg(C*(G/P,ny),C*(G/N)) = oco.

k—o0

We prove this proposition by constructing concrete intertwining operators, which are differ-
ential operators in the sense of [8, Def. 2.1]. Let R : g — Endc(C*(G)) be a differential of the
right regular representation on C*°(G) of G. In other words, for X € g and f € C*°(G), define
R(X)f € C*(G) by

(ROOP(E) = i)

where x € G. Then, R extends to : U(g) — Endc(C*°(G)) where U(g) is the universal enveloping
algebra of g. If G’ has no compact factors and [ is not abelian, we can take an element Y € g¢

satisfying the following property.

Let V}, be a subrepresentation of L on U(g) is generated by Y* for any k € N. Then there exists
a one-dimensional representation 7, of P such that R(Vj) C Homg(C*(G/P,n), C>*(G/N))
and limy_, o, dim R(V}) = oo hold.

Here we abbreviate R(V}) C Homg(C*(G/P,n), C>°(G/N)) because the image of the restric-
tion of R(Vy) on C>*(G/P,n;) C C*>(G) is contained in C*°(G/N) although R(V}) is a priori
contained in End¢(C*°(G)). This implies Proposition 2.3. O
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