
Convex property of Wulff shapes and regularity of their convex

integrands

九州大学大学院数理学符数理学専攻　数理学コース
（Graduate School of Mathematics Kyushu University）

照屋靖志 (Yasushi TERUYA)

Abstract

We study the convexity of the Wulff shape. In this paper, we investigate a convex property
of the Wulff shape, both locally and globally.

1 Introduction

Let n ∈ N. We denote by Sn the unit sphere with center at the origin in Rn+1. Let γ : Sn −→ R>0

be a positive continuous function. For any ν ∈ Sn, we set

Γγ,ν := {x ∈ Rn+1|⟨x, ν⟩ ≤ γ(ν)},

where ⟨ , ⟩ stands for the standard inner product of Rn+1. The definition of the Wulff shape
for γ is as follows :

Wγ
def
=

∩
ν∈Sn

Γγ,ν .

We note that the Wulff shape for γ is not smooth in general (examples of nonsmooth Wulff
shapes are given in Section 2). γ is called convex integrand if the homogeneous extension γ̃
to Rn+1 of γ is convex function. It is equivalent to the condition γ̃(x+ y) ≤ γ̃(x) + γ̃(y) for any
x, y ∈ Rn+1.

By the fact which J. E. Taylor [3] proved in 1978, it is known that for a given V > 0, there
exists a unique (up to translations) closed hypersuface S which minimizes an anisotropic surface
energy Eγ among all closed piecewise smooth hypersurfaces in Rn+1 enclosing the same volume
V , and the minimizer S is homothetic with the boundary of the Wulff shape for γ. Here, for a
smooth hypersurface S in Rn+1 (when S ⊂ Rn+1 is an n-dimensional submanifold of Rn+1, S
is called a hypersurface in Rn+1) with the outward pointing unit normal vector field ν on S, an
anisotropic surface energy Eγ(S) of S is as follows :

Eγ(S) :=

∫
S
γ(ν(p)) dS,

where dS is the n-dimensional volume element of S. More generally, even if S is a piecewise
smooth compact hypersurface without self-intersections, Eγ(S) can be defined. In fact, we
consider the integral

∫
γ(ν(p)) dS over each part in which S is smooth and take the sum of

all integrals. Therefore, the Wulff shape for γ is the solution of the isoperimetric problem for
the functional Eγ . In the case where γ ≡ 1, the anisotropic surface energy Eγ(S) is the usual
n-dimensional volume of the hypersurface S, and the Wulff shape for γ is the unit sphere Sn.
When n = 2, Eγ(S) is the surface area of S. Thus, the Wulff shape for γ is the solution of
the classical isoperimetric problem. The solution is known as a mathematical model of a soap



bubble. Thus, the Wulff shape is the generalization of the solution of the classical isoperimetric
problem and the research for the Wulff shape is practical.

The Wulff shape is known as a mathematical model of a crystal. For example, it is known
that the crystal of a salt is a cube and the crystal of an ice is an octahedron which is surrounded
by two hexagons and six rectangles normal to them [7]. In general, the Wulff shape is not
smooth. In some cases, the Wulff shape is a closed surface containing straight segments, flat
faces and edges like a polytope. It is known that if γ satisfies the “convexity condition”, the
Wulff shape for γ has no edges, that is, the Wulff shape for γ is smooth (Note that we need to
assume that γ is of C2 to assume the convexity condition for γ. See [1], [4] for the definition
of the “convexity condition”.). However, it is not natural to assume the smoothness of the
Wulff shape if we regard it as a mathematical model of a crystal. Also, to research more general
properties of the Wulff shape, we neither assume high regularity of γ nor the convexity condition
for γ in this paper.

We are interested in when the Wulff shape contains straight segments and flat faces. In 2017,
H. Han and T. Nishimura [2] proved that the following (a) and (b) are equivalent :

(a) γ is of C1.

(b) The boundary of the Wulff shape for γ has no segments.

By their theorem, when γ is not of C1, the Wulff shape for γ contains a straight segment. In
this paper, we investigate more detail their relationship.

2 Preliminaries

2.1 Examples of Wulff shapes

First, we would like to show many examples of Wulff shapes. In the following examples, the
white part is the Wulff shape. The red curve is the γ-plot. Here, γ-plot is the set { γ(ν)ν ∈
Rn+1|ν ∈ Sn} The blue lines are the boundaries of the half spaces Γγ,ν .

Example 2.1. Let γi : S
1 −→ R≥0, i = 1, 2, 3, 4, 5, 6, ν = (ν1, ν2) ∈ S1.

γ1 ≡ 1
the Wulff shape is a circle.

γ2(ν) = |ν1|+ |ν2|
the Wulff shape is a square.



γ3(ν) =
√
1 + ν1

γ5(ν) =
√
1 + 2ν12

γ4(ν) = γ2(ν)
2

γ6(ν) = 1 + |ν1|

Figure 1: Examples of Wulff shapes

2.2 Notations and Definitions

Kn+1
0 := {A ⊂ Rn+1 | A is a compact convex set containing the origin.}.

Let γ : Sn −→ R≥0 be a non-negative continuous function. Then, by the definition of Wγ , we
can verify that Wγ ∈ Kn+1

0 . Conversely, it is known that for a given W ∈ Kn+1
0 there exists a

continuous function γ : Sn −→ R≥0 such that W = Wγ . In fact, for a function γ : Sn −→ R≥0

defined by

γ(ν) := max
x∈W

⟨x, ν⟩ (∀ν ∈ Sn),

γ is continuous and W = Wγ holds (see [3] for details on the proof). The function γ : Sn −→ R≥0

constructed as above is called the convex integrand for W and denoted by γW . For W ∈ Kn+1
0

we set C0
W (Sn,R≥0) := {γ : Sn −→ R≥0| γ is continuous and W = Wγ}.

An element of C0
W (Sn,R≥0) is called a support function for W . As demonstrated above,

we obtain C0
W (Sn,R≥0) ̸= ϕ (Because γW is contained in it.). But, C0

W (Sn,R≥0) = {γW } does



not hold in general, that is, a support function for a given W ∈ Kn+1
0 is not unique.

For W ∈ Kn+1
0 and ν ∈ Sn, we denote by F (W,ν) the intersection of the boundary of W

and the boundary of ΓγW ,ν :

F (W,ν) := ∂W ∩ ∂ΓγW ,ν ,

We call the set F (W,ν) the ν-way face of W. By the following remark, F (W,ν) is a nonempty
set.

Remark 2.1. The following (a) and (b) are equivalent.

(a) γ is the convex integrand for W.

(b) ∀ν ∈ Sn : ∂W ∩ ∂Γγ,ν ̸= ϕ.

Example 2.2. Let W ∈ K2
0 be a square whose incircle is S1. Then, for ν = (

1√
2
,
1√
2
) ∈ S1

F (W,ν) is the point (1, 1) that is an edge of W . For ν = (0, 1) ∈ S1, F (W,ν) is the segment
joining the points (−1, 1) and (1, 1), that is, a side of W .

Definition 2.1. Let γ : Sn −→ R≥0.
Then, the homogeneous extension γ̃ : Rn+1 −→ R≥0 of γ is defined by

γ̃(x) =

{
∥x∥γ( 1

∥x∥x), (x ̸= 0),

0, (x = 0).

Remark 2.2. Let W ∈ Kn+1
0 , and γ be the convex integrand for W. Then, the homogeneous

extension γ̃ of γ is represented as follows :

γ̃(x) = max
a∈W

⟨x, a⟩ (∀x ∈ Rn+1).

Then, γ̃ is convex function.

For A ⊂ Rn+1, we denote by Int(A) the set consisting of interior points of A.

Definition 2.2. Let W ⊂ Rn+1. Then, if xy \ {x, y} ⊂ Int(W ) holds for any distinct two
points x, y ∈ ∂W , we say that W is strictly convex.

Example 2.3. A sphere is strictly convex. A cube is not strictly convex.

For W ∈ Kn+1
0 , W is strictly convex if and only if the boundary of W has no segments.

2.3 Known Results

Now, we list the known results about convex analysis and convex geometry below.

Fact 2.1 (cf. Schneider 1994 [5]). Let ν ∈ Sn and u ∈ Rn+1 \ {0}. Then the followings hold :
(1) D+

u γ̃W (ν) = max
x∈F (W,ν)

⟨x, u⟩,

(2) The set DDγ̃(ν) is a linear space,

(3) The following (a) and (b) are equivalent,

(a) γ is differentiable at ν,

(b) γ̃ is differentiable at ν,



(4) Similarly, for r ∈ N the following (a) and (b) are equivalent,

(a) γ is of Cr,

(b) γ̃ is of Cr on Rn+1 \ {0},

(5) the following (a) and (b) are equivalent,

(a) γ̃ is differentiable on Rn+1 \ {0},
(b) γ̃ is of C1 on Rn+1 \ {0},

(6) The following (a) and (b) are equivalent,

(a) W is strictly convex,

(b) F (W,ν) = {one point} (∀ν ∈ Sn),

(7) the following (a) and (b) are equivalent,

(a) γW is differentiable at ν,

(b) F (W,ν) = {one point},

where, D+
u γ̃W (ν) stands for the right-hand derivative of γ̃W with respect to the direction u

at ν and DDγ̃(ν) is the set consisting of all directions which γ̃ is differentiable at ν with respect
to.
We remark that the result by H. Han and T. Nishimura is the corollary of above fact.

3 Main Results

We state the local detail relationship between convex property of Wulff shapes and regularity of
their convex integrands.

Theorem 3.1. Let W ∈ Kn+1
0 , ν ∈ Sn. Then the following holds :

DDγW (ν)
⊕

VF (W,ν) = ⟨ν⟩⊥,
where VF (W,ν) is the vector space parallel to F (W,ν) in Rn+1and

DDγW (ν) = {dc
dt |t=0 ∈ Rn | γ ◦ c is differentiable at t = 0 for an arc c on Sn such that c(0) =

ν}.
Corollary 3.1. The following holds :

dimF (W,ν) = n− dimDDγW (ν),

where dimF (W,ν) is the dimension of the vector space VF (W,ν).

4 Proof of Main Results

In this section, since it immediately follows Corollary 3.1 from Theorem 3.1, we only prove
Theorem 3.1. Let ν ∈ Sn, W ∈ Kn+1

0 . We need the following lemma :

Lemma 4.1. The following holds :

DDγW (ν) = DDγ̃W (ν) ∩ ⟨ν⟩⊥.
Since it is easy to show this lemma, we skip the proof. By this lemma, it is sufficient to show

that DDγ̃(ν) = VF (W,ν)
⊥. u ∈ DDγ̃W (ν) if and only if D+

u γ̃W (ν) = −D+
−uγ̃W (ν). This equation

is equivalent to the equation max
x∈F (W,ν)

⟨x, u⟩ = min
x∈F (W,ν)

⟨x, u⟩. This equation holds if and only if

F (W,ν) is contained a plane perpendicular to the direction u, it is equivalent to u ∈ VF (W,ν)
⊥.

Therefore we have finished the proof of this theorem.



5 Examples of Main Results

Example 5.1.

γ(ν) = |ν1|+ |ν2|+ |ν3|
(ν = (ν1, ν2, ν3) ∈ S2)

Wγ is a cube.

For ν = (0, 0, 1) ∈ S2,

F (W,ν) is the flat face of cube.

dimF (W,ν) = 2.

For ν = (0,
1√
2
,
1√
2
) ∈ S2,

F (W,ν) is the segment of cube.

dimF (W,ν) = 1.

For ν = (
1√
3
,
1√
3
,
1√
3
) ∈ S2,

F (W,ν) is the vertex of cube.

dimF (W,ν) = 0.
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