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1 Introduction

To protect the copyright of digital contents, a dealer who possesses a large amount
of copyrighted data would charge for the copyright of data. The one who paid for the
copyright can get the access to data, and the guy who did not pay would be held back.
In broadcast encryption, the dealer encrypts the copyrighted data and uploads to a pub-
lic cloud. Anyone can download the public encrypted contents, but a decryption key is
required to recover the original data.

To hinder the illegal redistribution of the decryption key, the dealer would assign each
authorized user, who purchased the copyright of data, a personal decoder, which is a
collection of base decryption keys and can be used to recover the data (maybe with the
help of some devices). However, several dishonest users (traitors) may work together to
generate a new decoder (pirate) and distribute it to several unauthorized users. Anti-
collusion schemes were introduced to help the dealer design the judicious key-distribution
strategy and trace back to traitors once a pirate copy is confiscated [2, 3].

Based on a threshold secret sharing scheme, Stinson et al. [9] proposed the traceabil-
ity scheme for the anti-collusion key-distribution in broadcast encryption and studied it
from a combinatorial viewpoint. In this setting, a traceability scheme(v, k) is a set system
(X ,B) with the desired properties, where X is a finite set of size v and B is collection of
k-subsets of X . The ground set X corresponds to the set of v base keys. Each authorized
user, who paid for the copyright, is assigned with a k-subset of X , which can be used to
decrypt the encrypted contents. Thus the family B of k-subsets of X represents all the
authorized users.

A t-collusion means that t dishonest users (traitors) B1, . . . , Bt ∈ B work together to
generate a k-subset (pirate) T ⊆

⋃
1≤i≤tBi and redistribute T to some unauthorized user-

s. Stinson et al. [9] showed that their traceability scheme can ensure that once a pirate
in a t-collusion is confiscated, at least one traitor can be traced back. Also in the same
setting, parent-identifying set system was investigated in [4] with the advantage that can
accommodate more users than traceability schemes, where the required properties are
weaker than that of traceability schemes. The idea of parent-identifying property was
introduced by Hollmann et al. in [8]. We first state the definition of parent-identifying
set systems as follows.



Definition 1. A (w, v) t-parent-identifying set system (or t-IPPS(w, v), for short) is a
pair (X ,B) such that |X | = v, B ⊆

(X
w

)
, with the property that for any w-subset T ⊆ X ,

either Pt(T ) is empty, or ⋂
P∈Pt(T )

P 6= ∅,

where
Pt(T ) = {P ⊆ B : |P| ≤ t, T ⊆

⋃
B∈P

B}.

When a pirate T generated by a s-collusion, 1 ≤ s ≤ t, is confiscated, t-IPPSs ensure
that at least one traitor can be traced back. In fact, one could check each subset of B
with size at most t and then get Pt(T ). By Definition 1, the intersection of all members
in Pt(T ) is nonempty, and each guy in the intersection is a traitor.

The cardinality of B is called the size of the set system. Since the size of the set
system corresponds to the number of authorized users in this scheme, we expect that the
size can be as large as possible. Denote It(w, v) as the maximum size of a t-IPPS(w, v).
A t-IPPS(w, v) is called optimal if it has size It(w, v). Given parameters t, w and v, the
goal is to explore the exact value of It(w, v) and to construct optimal t-IPPS(w, v). In
the next section, we will argue the bounds of It(w, v).

The following is one example of 2-IPPS.

Example 1. Let X = {1, 2, . . . , 11} and B = {B1 = {1, 2, 3, 4}, B2 = {3, 5, 6, 7}, B3 =
{4, 7, 8, 9}, B4 = {2, 7, 10, 11}}. By Definition 1, (X ,B) is a 2-IPPS(4, 11).

For instance, if T = {2, 3, 5, 7}, we have

{2, 3, 5, 7} ⊆ B1 ∪B2,

{2, 3, 5, 7} ⊆ B2 ∪B4.

Then P2(T ) = {{B1, B2}, {B2, B4}} and
⋂
P∈P2(T )

P = {B2} 6= ∅.
One can check that for each 4-subset T ⊆ X , the desired property in Definition 1 can

be satisfied. Thus (X ,B) is a 2-IPPS(4, 11).

2 Bounds for IPPS

2.1 Known results

In the literature, a combinatorial structure called own-subset by Erdős, Frankl and
Füredi [5] was used to derive upper bounds for IPPS. In a set system (X ,B), B ∈ B, a
subset B0 ⊆ B is called a |B0|-own-subset of B if for any B′ ∈ B \{B}, we have B0 * B′.

The first upper bound for IPPS was given by Collins in [4] by investigating own-subsets
with size d w

bt2/4c+dt/2ee.

Theorem 1 ([4]). Let v ≥ w ≥ 2, t ≥ 2 be integers. Then

It(w, v) ≤

(
v

d w
bt2/4c+dt/2e

e

)
( d w

bt/2c+1
e−1

d w
bt2/4c+dt/2e

e−1

) = O(v
d w
bt2/4c+dt/2e

e
).



In [7], Gu and Miao improved the above upper bound by showing that some block
of a t-IPPS must contain at least one own-subset with a smaller size than d w

bt2/4c+dt/2ee,
that is, own-subsets with size d w

bt2/4c+te. Obviously, d w
bt2/4c+te ≤ d

w
bt2/4c+dt/2ee holds for all

v ≥ w ≥ 2 and t ≥ 2.

Theorem 2 ([7]). Let v ≥ w ≥ 2, t ≥ 2 be integers. Then

It(w, v) ≤
(

v

d w
bt2/4c+te

)
= O(v

d w
bt2/4c+t

e
).

Furthermore, Gu et al. [6] provided a lower bound for IPPS by virtue of the proba-
bilistic methods, which shows that the upper bound in Theorem 2 has the best possible
exponent for certain cases.

Theorem 3 ([6]). Let w and t be fixed positive integers such that t ≥ 2. Then there
exists a constant c, depending only on w and t, with the following property. For any
sufficiently large integer v, there exists a t-IPPS(w, v) with size at least cv

w
u−1 , that is,

It(w, v) ≥ cv
w

u−1 , where u = b( t
2

+ 1)2c.

2.2 New results

We can see that the upper bound in Theorem 2 and the lower bound in Theorem 3
have the same order of magnitude, w

bt2/4c+t , when bt2/4c + t is a divisor of w and v is

sufficiently large. However, when bt2/4c + t is not a divisor of w, there is a gap between
the order of magnitude in Theorem 2 and in Theorem 3. In the following, we consider
the case that t = 2 and w = 4, where 3 - 4.

First, we have the following corollary directly from Theorem 2 and Theorem 3.

Corollary 1. For sufficiently large v, we have

cv4/3 ≤ I2(4, v) ≤ 1

2
v2,

where c is a positive constant.

One interesting problem is to determine the order of magnitude of the size of 2-
IPPS(4, v). By using a graph theoretic method, we show that

Theorem 4. lim
v→∞

I2(4, v) = o(v2).

The tool exploited in the argument of Theorem 4 is the well-known graph removal
lemma proved by Alon, Duke, Lefmann, Rödl and Yuster in [1].

Lemma 1 ([1]). For every γ > 0 and every positive integer k, there exists a constant
δ = δ(k, γ) > 0 such that every graph G on n vertices, containing less than δnk copies of
the complete graph Kk on k vertices, contains a set of less than γn2 edges whose deletion
destroys all copies of Kk in G.

Theorem 4 can be generated to the case t = 3 and w = 6 by a similar argument.



Theorem 5. lim
v→∞

I3(6, v) = o(v2).

However, for t ≥ 4 and w = b( t
2

+ 1)2c, we may cannot have a similar argument as
that of Theorem 4. Since in a graph, we can only get 2t points from t distinct edges, and
the fact w = b( t

2
+ 1)2c > 2t for any t ≥ 4 implies that 2t points are not enough to form

a w-subset. But we believe that this obstacle can be removed by virtue of hypergraphs
or some elaborate analyses. To be precise, we have the following conjecture.

Conjecture 1. Suppose t ≥ 4 is a positive integer, then

lim
v→∞

It(w, v) = o(v2),

where w = b( t
2

+ 1)2c.

Moreover, we conjecture that the upper bound in Theorem 4 is the best possible for
2-IPPS(4, v). To be exact, we have

Conjecture 2. For any constant ε > 0 and sufficiently large v, there exists a 2-IPPS(4, v)
with size cv2−ε, where c is a positive constant.

We remark that to prove Conjecture 2, some techniques or tools in number theory and
additive combinatorics may be required.
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