Complex interpolation of B_{w}^{u}-function spaces

Denny Ivanal Hakim *
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan
Email: dennyivanalhakim@gmail.com,

1 Introduction

In this note, we inverstigate the first and second complex interplation of \dot{B}_{w}^{u} spaces. Let us recall the definition of these spaces (see [4]). Let $1 \leq u, p \leq \infty$ and $w:(0, \infty) \rightarrow(0, \infty)$ be a nonincreasing function. For $r>0$ denote by $B(r)$ the open ball in \mathbb{R}^{n} centered at the origin. The space $\dot{B}_{w}^{u}\left(L^{p}\right)$ and $B_{w}^{u}\left(L^{p}\right)$ are defined to be the sets of all measurable functions f on \mathbb{R}^{n} for which

$$
\|f\|_{\dot{B}_{w}^{u}\left(L^{p}\right)} \equiv \begin{cases}\left(\int_{0}^{\infty}\left(w(r)\|f\|_{L^{p}(B(r))}\right)^{u} \frac{d r}{r}\right)^{\frac{1}{u}}, & \text { for } u<\infty \\ \sup _{r>0} w(r)\|f\|_{L^{p}(B(r))}, & \text { for } u=\infty .\end{cases}
$$

and

$$
\|f\|_{B_{w}^{u}\left(L^{p}\right)} \equiv \begin{cases}\left(\int_{1}^{\infty}\left(w(r)\|f\|_{L^{p}(B(r))}\right)^{u} \frac{d r}{r}\right)^{\frac{1}{u}}, & \text { for } u<\infty \\ \sup _{r \geq 1} w(r)\|f\|_{L^{p}(B(r))}, & \text { for } u=\infty\end{cases}
$$

are finite. In order to guarantee that $\chi_{B(R)} \in \dot{B}_{w}^{u}\left(L^{p}\right)$, we assume that

$$
\begin{equation*}
\int_{0}^{R} \frac{w(r)^{u}|B(r)|^{u / p}}{r} d r<\infty \quad \text { and } \quad \int_{R}^{\infty} \frac{w(r)^{u}}{r} d r<\infty \tag{1}
\end{equation*}
$$

for every $R>0$. Note that if $w(r)=1$ and $u=\infty$, then $\dot{B}_{w}^{u}\left(L^{p}\right)=L^{p}$.
We now recall the definition of the complex interpolation method, introduced by A. P. Calderón (see [1, 2]). Let $\bar{S}:=\{z \in \mathbb{C}: 0 \leq \operatorname{Re}(z) \leq 1\}$ and S be its

[^0]interior. Recall that a pair $\left(X_{0}, X_{1}\right)$ is said to be a compatible couple of Banach spaces if there exists a Hausdorff topological vector space Z such that X_{0} and X_{1} are subspaces of Z.

Definition 1.1 (Calderón's first complex interpolation functor). Let (X_{0}, X_{1}) be a compatible couple of Banach spaces. The space $\mathcal{F}\left(X_{0}, X_{1}\right)$ is defined to be the set of all continuous functions $F: \bar{S} \rightarrow X_{0}+X_{1}$ such that

1. $\sup _{z \in \bar{S}}\|F(z)\|_{X_{0}+X_{1}}<\infty$,
2. F is holomorphic on S,
3. the functions $t \in \mathbb{R} \mapsto F(j+i t) \in X_{j}$ are bounded and continuous on \mathbb{R} for $j=0,1$.

The norm on $\mathcal{F}\left(X_{0}, X_{1}\right)$ is defined by

$$
\|F\|_{\mathcal{F}\left(X_{0}, X_{1}\right)}:=\max \left\{\sup _{t \in \mathbb{R}}\|F(i t)\|_{X_{0}}, \sup _{t \in \mathbb{R}}\|F(1+i t)\|_{X_{1}}\right\}
$$

Definition 1.2 (Calderón's first complex interpolation spaces). Let $\theta \in(0,1)$ and $\left(X_{0}, X_{1}\right)$ be a compatible couple of Banach spaces. The complex interpolation space $\left[X_{0}, X_{1}\right]_{\theta}$ with respect to $\left(X_{0}, X_{1}\right)$ is defined by

$$
\left[X_{0}, X_{1}\right]_{\theta}:=\left\{f \in X_{0}+X_{1}: f=F(\theta) \text { for some } F \in \mathcal{F}\left(X_{0}, X_{1}\right)\right\}
$$

The norm on $\left[X_{0}, X_{1}\right]_{\theta}$ is defined by

$$
\|f\|_{\left[X_{0}, X_{1}\right]_{\theta}}:=\inf \left\{\|F\|_{\mathcal{F}\left(X_{0}, X_{1}\right)}: f=F(\theta) \text { for some } F \in \mathcal{F}\left(X_{0}, X_{1}\right)\right\} .
$$

The fact that $\left[X_{0}, X_{1}\right]_{\theta}$ is a Banach space can be seen in [2] and [1, Theorem 4.1.2]. When X_{0} and X_{1} are Lebesgue spaces, Calderón gave the following description of $\left[X_{0}, X_{1}\right]_{\theta}$.

Theorem 1.3. [2] Let $\theta \in(0,1), 1 \leq p_{0} \leq \infty$, and $1 \leq p_{1} \leq \infty$. Then

$$
\left[L^{p_{0}}, L^{p_{1}}\right]_{\theta}=L^{p}
$$

where p is defined by

$$
\frac{1}{p}:=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}
$$

Note that the Riesz-Thorin complex interpolation theorem can be seen as a corollary of Theorem 1.3 and the following Calderón's result.

Theorem 1.4. [2] Let $\left(X_{0}, X_{1}\right)$ and $\left(Y_{0}, Y_{1}\right)$ be two compatible couples of Banach spaces and let $\theta \in(0,1)$. Suppose that T is a bounded linear operator from X_{k} to Y_{k} for $k=0,1$. Then, T is bounded from $\left[X_{0}, X_{1}\right]_{\theta}$ to $\left[Y_{0}, Y_{1}\right]_{\theta}$.

We now move on to the second complex interpolation method. First let us recall the definition of Banach space-valued Lipschitz continuous functions. Given a Banach spaces X. The space $\operatorname{Lip}(\mathbb{R}, X)$ is defined as the set of all functions $f: \mathbb{R} \rightarrow X$ for which

$$
\|f\|_{\operatorname{Lip}(\mathbb{R}, X)}:=\sup _{-\infty<s<t<\infty} \frac{\|f(t)-f(s)\|_{X}}{|t-s|}
$$

is finite.
Definition 1.5. [1, 2](Calderón's second complex interpolation functor) Let $\left(X_{0}, X_{1}\right)$ be a compatible couple of Banach spaces. Denote by $\mathcal{G}\left(X_{0}, X_{1}\right)$ the set of all continuous functions $G: \bar{S} \rightarrow X_{0}+X_{1}$ such that:

1. G is holomorphic on S,
2. $\sup _{z \in \bar{S}}\left\|\frac{G(z)}{1+|z|}\right\|_{X_{0}+X_{1}}<\infty$,
3. the functions

$$
t \in \mathbb{R} \mapsto G(j+i t)-G(j) \in X_{j}
$$

are Lipschitz continuous on \mathbb{R} for $j=0,1$.
The space $\mathcal{G}\left(X_{0}, X_{1}\right)$ is equipped with the norm

$$
\begin{equation*}
\|G\|_{\mathcal{G}\left(X_{0}, X_{1}\right)}:=\max \left\{\|G(i \cdot)\|_{\operatorname{Lip}\left(\mathbb{R}, X_{0}\right)},\|G(1+i \cdot)\|_{\operatorname{Lip}\left(\mathbb{R}, X_{1}\right)}\right\} . \tag{2}
\end{equation*}
$$

Definition 1.6. [1, 2](Calderón's second complex interpolation space) Let $\theta \in$ $(0,1)$. The second complex interpolation space $\left[X_{0}, X_{1}\right]^{\theta}$ with respect to (X_{0}, X_{1}) is defined to be the set of all $f \in X_{0}+X_{1}$ such that $f=G^{\prime}(\theta)$ for some $G \in$ $\mathcal{G}\left(X_{0}, X_{1}\right)$. The norm on $\left[X_{0}, X_{1}\right]^{\theta}$ is defined by

$$
\|f\|_{\left[X_{0}, X_{1}\right]^{]}}:=\inf \left\{\|G\|_{\mathcal{G}\left(X_{0}, X_{1}\right)}: f=G^{\prime}(\theta) \text { for some } G \in \mathcal{G}\left(X_{0}, X_{1}\right)\right\} .
$$

2 Main results

We now state our main results. Suppose that we have 3 functions w_{0}, w_{1}, w : $(0, \infty) \rightarrow(0, \infty)$ and 7 parameters $0<\theta<1 \leq u_{0}, p_{0}, u_{1}, p_{1}, u, p \leq \infty$ satisfying

$$
\begin{equation*}
p_{0} \neq p_{1}, \quad \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{u}=\frac{1-\theta}{u_{0}}+\frac{\theta}{u_{1}}, \quad w=w_{0}^{1-\theta} w_{1}^{\theta} . \tag{3}
\end{equation*}
$$

For the case u_{0} and u_{1} are finite, in addition to (3), we assume that

$$
\begin{equation*}
\frac{u_{0}}{p_{0}}=\frac{u_{1}}{p_{1}} \quad \text { and } \quad \omega_{0}^{u_{0}}=\omega_{1}^{u_{1}} \tag{4}
\end{equation*}
$$

We first describe the first complex interpolation $\left[\dot{B}_{w_{0}}^{u_{0}}\left(L^{p_{0}}\right), \dot{B}_{w_{1}}^{u_{1}}\left(L^{p_{1}}\right)\right]_{\theta}$ and the second complex interpolation $\left[\dot{B}_{w_{0}}^{u_{0}}\left(L^{p_{0}}\right), \dot{B}_{w_{1}}^{u_{1}}\left(L^{p_{1}}\right)\right]^{\theta}$ for the case u_{0} and u_{1} are finite.

Theorem 2.1. [3] Suppose that $u_{0}, u_{1}<\infty$. Assume that (3) and (4) hold. Then

1. $\left[\dot{B}_{w_{0}}^{u_{0}}\left(L^{p_{0}}\right), \dot{B}_{w_{1}}^{u_{1}}\left(L^{p_{1}}\right)\right]_{\theta}=\left[\dot{B}_{w_{0}}^{u_{0}}\left(L^{p_{0}}\right), \dot{B}_{w_{1}}^{u_{1}}\left(L^{p_{1}}\right)\right]^{\theta}=\dot{B}_{w}^{u}\left(L^{p}\right)$.
2. $\left[B_{w_{0}}^{u_{0}}\left(L^{p_{0}}\right), B_{w_{1}}^{u_{1}}\left(L^{p_{1}}\right)\right]_{\theta}=\left[B_{w_{0}}^{u_{0}}\left(L^{p_{0}}\right), B_{w_{1}}^{u_{1}}\left(L^{p_{1}}\right)\right]^{\theta}=B_{w}^{u}\left(L^{p}\right)$.

For the case $u_{0}=u_{1}=u=\infty$, we have the following result.
Theorem 2.2. [3] Let $\theta \in(0,1), 1 \leq p_{0}, p_{1}<\infty$, and $w_{0}, w_{1}:(0, \infty) \rightarrow(0, \infty)$. Suppose that $w_{0}(r)^{p_{0}}=w_{1}(r)^{p_{1}}$. Define p and w by

$$
\frac{1}{p}:=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} \quad \text { and } \quad w:=w_{0}^{1-\theta} w_{1}^{\theta} .
$$

Then

$$
\begin{align*}
& {\left[\dot{B}_{w_{0}}^{\infty}\left(L^{p_{0}}\right), \dot{B}_{w_{1}}^{\infty}\left(L^{p_{1}}\right)\right]_{\theta}} \\
& \quad=\left\{f \in \dot{B}_{w}^{\infty}\left(L^{p}\right): \lim _{j \rightarrow \infty}\left\|f-\chi_{\left\{\frac{1}{j} \leq|f| \leq j\right\}} f\right\|_{\dot{B}_{w}^{\infty}\left(L^{p}\right)}=0\right\} \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\left[\dot{B}_{w_{0}}^{\infty}\left(L^{p_{0}}\right), \dot{B}_{w_{1}}^{\infty}\left(L^{p_{1}}\right)\right]^{\theta}=\dot{B}_{w}^{\infty}\left(L^{p}\right) \tag{6}
\end{equation*}
$$

References

[1] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, no. 223. SpringerVerlag, Berlin-New York, 1976.
[2] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), no.2, 113-190.
[3] D. I. Hakim, S. Nakamura, Y. Sawano, and T. Sobukawa, Complex Interpolation of B_{w}^{u}-spaces, Complex variables and elliptic equations, online, (2017), DOI: http://dx.doi.org/10.1080/17476933.2017.1327954.
[4] E. Nakai and T. Sobukawa, B_{u}^{w}-function spaces and their interpolation, Tokyo J. of Math., 39 (2016), no. 2, 483-517.

[^0]: *joint work with Shohei Nakamura (Tokyo Metropolitan University), Yoshihiro Sawano (Tokyo Metropolitan University), and Takuya Sobukawa (Waseda University)

