Complex interpolation of B_w^u -function spaces

Denny Ivanal Hakim *

Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo, 192-0397, Japan Email: dennyivanalhakim@gmail.com,

1 Introduction

In this note, we inverstigate the first and second complex interplation of \dot{B}_w^u -spaces. Let us recall the definition of these spaces (see [4]). Let $1 \leq u, p \leq \infty$ and $w: (0, \infty) \to (0, \infty)$ be a nonincreasing function. For r > 0 denote by B(r) the open ball in \mathbb{R}^n centered at the origin. The space $\dot{B}_w^u(L^p)$ and $B_w^u(L^p)$ are defined to be the sets of all measurable functions f on \mathbb{R}^n for which

$$\|f\|_{\dot{B}^{u}_{w}(L^{p})} \equiv \begin{cases} \left(\int_{0}^{\infty} (w(r)\|f\|_{L^{p}(B(r))})^{u} \frac{dr}{r}\right)^{\frac{1}{u}}, & \text{for } u < \infty\\ \sup_{r>0} w(r)\|f\|_{L^{p}(B(r))}, & \text{for } u = \infty. \end{cases}$$

and

$$||f||_{B^u_w(L^p)} \equiv \begin{cases} \left(\int_1^\infty (w(r)||f||_{L^p(B(r))})^u \frac{dr}{r}\right)^{\frac{1}{u}}, & \text{for } u < \infty\\ \sup_{r \ge 1} w(r)||f||_{L^p(B(r))}, & \text{for } u = \infty \end{cases}$$

are finite. In order to guarantee that $\chi_{B(R)} \in \dot{B}^u_w(L^p)$, we assume that

$$\int_0^R \frac{w(r)^u |B(r)|^{u/p}}{r} \, dr < \infty \quad \text{and} \quad \int_R^\infty \frac{w(r)^u}{r} \, dr < \infty, \tag{1}$$

for every R > 0. Note that if w(r) = 1 and $u = \infty$, then $\dot{B}^u_w(L^p) = L^p$.

We now recall the definition of the complex interpolation method, introduced by A. P. Calderón (see [1, 2]). Let $\overline{S} := \{z \in \mathbb{C} : 0 \leq \text{Re}(z) \leq 1\}$ and S be its

^{*}joint work with Shohei Nakamura (Tokyo Metropolitan University), Yoshihiro Sawano (Tokyo Metropolitan University), and Takuya Sobukawa (Waseda University)

interior. Recall that a pair (X_0, X_1) is said to be a compatible couple of Banach spaces if there exists a Hausdorff topological vector space Z such that X_0 and X_1 are subspaces of Z.

Definition 1.1 (Calderón's first complex interpolation functor). Let (X_0, X_1) be a compatible couple of Banach spaces. The space $\mathcal{F}(X_0, X_1)$ is defined to be the set of all continuous functions $F: \overline{S} \to X_0 + X_1$ such that

- 1. $\sup_{z\in\overline{S}} \|F(z)\|_{X_0+X_1} < \infty,$
- 2. F is holomorphic on S,
- 3. the functions $t \in \mathbb{R} \mapsto F(j+it) \in X_j$ are bounded and continuous on \mathbb{R} for j = 0, 1.

The norm on $\mathcal{F}(X_0, X_1)$ is defined by

$$||F||_{\mathcal{F}(X_0,X_1)} := \max\left\{\sup_{t\in\mathbb{R}} ||F(it)||_{X_0}, \sup_{t\in\mathbb{R}} ||F(1+it)||_{X_1}\right\}.$$

Definition 1.2 (Calderón's first complex interpolation spaces). Let $\theta \in (0, 1)$ and (X_0, X_1) be a compatible couple of Banach spaces. The complex interpolation space $[X_0, X_1]_{\theta}$ with respect to (X_0, X_1) is defined by

$$[X_0, X_1]_{\theta} := \{ f \in X_0 + X_1 : f = F(\theta) \text{ for some } F \in \mathcal{F}(X_0, X_1) \}$$

The norm on $[X_0, X_1]_{\theta}$ is defined by

$$||f||_{[X_0,X_1]_{\theta}} := \inf\{||F||_{\mathcal{F}(X_0,X_1)} : f = F(\theta) \text{ for some } F \in \mathcal{F}(X_0,X_1)\}.$$

The fact that $[X_0, X_1]_{\theta}$ is a Banach space can be seen in [2] and [1, Theorem 4.1.2]. When X_0 and X_1 are Lebesgue spaces, Calderón gave the following description of $[X_0, X_1]_{\theta}$.

Theorem 1.3. [2] Let $\theta \in (0, 1)$, $1 \le p_0 \le \infty$, and $1 \le p_1 \le \infty$. Then

$$[L^{p_0}, L^{p_1}]_{\theta} = L^p$$

where p is defined by

$$\frac{1}{p} := \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$$

Note that the Riesz-Thorin complex interpolation theorem can be seen as a corollary of Theorem 1.3 and the following Calderón's result.

Theorem 1.4. [2] Let (X_0, X_1) and (Y_0, Y_1) be two compatible couples of Banach spaces and let $\theta \in (0, 1)$. Suppose that T is a bounded linear operator from X_k to Y_k for k = 0, 1. Then, T is bounded from $[X_0, X_1]_{\theta}$ to $[Y_0, Y_1]_{\theta}$.

We now move on to the second complex interpolation method. First let us recall the definition of Banach space-valued Lipschitz continuous functions. Given a Banach spaces X. The space $\operatorname{Lip}(\mathbb{R}, X)$ is defined as the set of all functions $f: \mathbb{R} \to X$ for which

$$||f||_{\operatorname{Lip}(\mathbb{R},X)} := \sup_{-\infty < s < t < \infty} \frac{||f(t) - f(s)||_X}{|t - s|}$$

is finite.

Definition 1.5. [1, 2](Calderón's second complex interpolation functor) Let (X_0, X_1) be a compatible couple of Banach spaces. Denote by $\mathcal{G}(X_0, X_1)$ the set of all continuous functions $G : \overline{S} \to X_0 + X_1$ such that:

- 1. G is holomorphic on S,
- $2. \ \sup_{z\in \bar{S}} \left\| \frac{G(z)}{1+|z|} \right\|_{X_0+X_1} < \infty,$
- 3. the functions

$$t \in \mathbb{R} \mapsto G(j+it) - G(j) \in X_j$$

are Lipschitz continuous on \mathbb{R} for j = 0, 1.

The space $\mathcal{G}(X_0, X_1)$ is equipped with the norm

$$\|G\|_{\mathcal{G}(X_0,X_1)} := \max\left\{\|G(i\cdot)\|_{\operatorname{Lip}(\mathbb{R},X_0)}, \|G(1+i\cdot)\|_{\operatorname{Lip}(\mathbb{R},X_1)}\right\}.$$
 (2)

Definition 1.6. [1, 2](Calderón's second complex interpolation space) Let $\theta \in (0, 1)$. The second complex interpolation space $[X_0, X_1]^{\theta}$ with respect to (X_0, X_1) is defined to be the set of all $f \in X_0 + X_1$ such that $f = G'(\theta)$ for some $G \in \mathcal{G}(X_0, X_1)$. The norm on $[X_0, X_1]^{\theta}$ is defined by

$$||f||_{[X_0,X_1]^{\theta}} := \inf\{||G||_{\mathcal{G}(X_0,X_1)} : f = G'(\theta) \text{ for some } G \in \mathcal{G}(X_0,X_1)\}$$

2 Main results

We now state our main results. Suppose that we have 3 functions w_0, w_1, w : $(0, \infty) \rightarrow (0, \infty)$ and 7 parameters $0 < \theta < 1 \le u_0, p_0, u_1, p_1, u, p \le \infty$ satisfying

$$p_0 \neq p_1, \quad \frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, \quad \frac{1}{u} = \frac{1-\theta}{u_0} + \frac{\theta}{u_1}, \quad w = w_0^{1-\theta} w_1^{\theta}.$$
 (3)

For the case u_0 and u_1 are finite, in addition to (3), we assume that

$$\frac{u_0}{p_0} = \frac{u_1}{p_1}$$
 and $\omega_0^{u_0} = \omega_1^{u_1}$. (4)

We first describe the first complex interpolation $[\dot{B}_{w_0}^{u_0}(L^{p_0}), \dot{B}_{w_1}^{u_1}(L^{p_1})]_{\theta}$ and the second complex interpolation $[\dot{B}_{w_0}^{u_0}(L^{p_0}), \dot{B}_{w_1}^{u_1}(L^{p_1})]^{\theta}$ for the case u_0 and u_1 are finite.

Theorem 2.1. [3] Suppose that $u_0, u_1 < \infty$. Assume that (3) and (4) hold. Then

1.
$$[\dot{B}_{w_0}^{u_0}(L^{p_0}), \dot{B}_{w_1}^{u_1}(L^{p_1})]_{\theta} = [\dot{B}_{w_0}^{u_0}(L^{p_0}), \dot{B}_{w_1}^{u_1}(L^{p_1})]^{\theta} = \dot{B}_w^u(L^p).$$

2. $[B_{w_0}^{u_0}(L^{p_0}), B_{w_1}^{u_1}(L^{p_1})]_{\theta} = [B_{w_0}^{u_0}(L^{p_0}), B_{w_1}^{u_1}(L^{p_1})]^{\theta} = B_w^u(L^p).$

For the case $u_0 = u_1 = u = \infty$, we have the following result.

Theorem 2.2. [3] Let $\theta \in (0, 1)$, $1 \le p_0, p_1 < \infty$, and $w_0, w_1 : (0, \infty) \to (0, \infty)$. Suppose that $w_0(r)^{p_0} = w_1(r)^{p_1}$. Define p and w by

$$\frac{1}{p} := \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \quad \text{and} \quad w := w_0^{1-\theta} w_1^{\theta}$$

Then

$$[\dot{B}_{w_0}^{\infty}(L^{p_0}), \dot{B}_{w_1}^{\infty}(L^{p_1})]_{\theta} = \left\{ f \in \dot{B}_w^{\infty}(L^p) : \lim_{j \to \infty} \|f - \chi_{\{\frac{1}{j} \le |f| \le j\}} f\|_{\dot{B}_w^{\infty}(L^p)} = 0 \right\}$$
(5)

and

$$[\dot{B}_{w_0}^{\infty}(L^{p_0}), \dot{B}_{w_1}^{\infty}(L^{p_1})]^{\theta} = \dot{B}_{w}^{\infty}(L^{p})$$
(6)

References

- J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, no. 223. Springer-Verlag, Berlin-New York, 1976.
- [2] A.P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), no.2, 113–190.
- [3] D. I. Hakim, S. Nakamura, Y. Sawano, and T. Sobukawa, Complex Interpolation of B^u_w-spaces, Complex variables and elliptic equations, online, (2017), DOI: http://dx.doi.org/10.1080/17476933.2017.1327954.
- [4] E. Nakai and T. Sobukawa, B_u^w -function spaces and their interpolation, Tokyo J. of Math., **39** (2016), no. 2, 483–517.