Bianchi-Bäcklund transformation for spacelike constant mean curvature surfaces in Minkowski 3-space*

Department of Mathematics, Graduate School of Science, Kobe University Joseph Cho

1 Background

Given a surface with constant negative Gaussian curvature (CNC) in the Euclidean 3-space \mathbb{R}^{3}, one may use the Bäcklund transformation to obtain a new CNC surface using tangential line congruence depending on a spectral parameter. It is using this transformation that Bianchi proved the Bianchi permutability theorem in [1], which says that given a seed CNC surface f, and two Bäcklund transforms $f_{\beta_{1}}$ and $f_{\beta_{2}}$ using spectral parameters β_{1} and β_{2} respectively, there exists a fourth surface \hat{f} such that

$$
\hat{f}=\left(f_{\beta_{1}}\right)_{\beta_{2}}=\left(f_{\beta_{2}}\right)_{\beta_{1}}
$$

or schematically,

Using the permutability, in [2], Bianchi considered twice successive transformations using complexified tangential line congruence to obtain a constant positive Gaussian curvature surface (CPC) from a given CPC surface, called the Bianchi-Bäcklund transformation. From this, one may construct a new constant mean curvature (CMC) surface from a given CMC surface, using the fact that a CMC surface is a parallel surface of a CPC surface.

In this presentation, we give a method of constructing a new spacelike CMC surface from a given one in Minkowski 3 -space $\mathbb{R}^{2,1}$ by developing an analogue of the classical Bianchi-Backlund transformation, and show that Bianchi permutability also holds for this transformation.

2 Bianchi-Bäcklund transformation for CMC surfaces in \mathbb{R}^{3}

We first briefly review the Bianchi-Bäcklund transformation in \mathbb{R}^{3}. (For further details, see [2], [8], or [5], for example.) Let $\Sigma \subset \mathbb{R}^{2}$ be a simply-connected domain with coordinates $(u, v) \in \Sigma$, and let $f: \Sigma \rightarrow \mathbb{R}^{3}$ be a conformally immersed surface with curvature line coodinates (u, v). Since $f(u, v)$ is conformal, for some function $\omega: \Sigma \rightarrow \mathbb{R}$,

$$
\mathrm{d} s^{2}=e^{2 \omega}\left(\mathrm{~d} u^{2}+\mathrm{d} v^{2}\right)
$$

We choose a unit normal vector field $e_{3}: \Sigma \rightarrow \mathbb{S}^{2}$. We further assume that the mean curvature $H=\frac{1}{2}$ and the Hopf differential factor $Q=-\frac{1}{4}$. Then integrability condition, or the Gauss equation, becomes

$$
\begin{equation*}
\Delta \omega+\sinh \omega \cosh \omega=0 \tag{1}
\end{equation*}
$$

the well-known sinh-Gordon equation.

[^0]By considering complexified tangential line congruence of a given surface with metric function ω satisfying (1), one may construct another solution $\vartheta: \Sigma \rightarrow \mathbb{C}$ to the same equation by solving

$$
\left\{\begin{array}{l}
(\vartheta-\omega)_{z}=\frac{1}{2} e^{\beta} \sinh (\vartheta+\omega) \tag{2}\\
(\vartheta+\omega)_{\bar{z}}=-\frac{1}{2} e^{-\beta} \sinh (\vartheta-\omega)
\end{array}\right.
$$

where β is some constant in \mathbb{R}, and $z=u+i v$.
To obtain another real solution to (1), we perform two iterations of this as follows: We first obtain ϑ and ϑ^{*} from a given solution ω using the constants β and β^{*}, respectively, via (2), where

$$
\begin{equation*}
\beta^{*}:=\pi i-\beta \tag{3}
\end{equation*}
$$

Then by performing another iteration, starting with ϑ and ϑ^{*}, and using β^{*} and β, respectively, we obtain a new solution ω^{N} via the Bianchi permutability formula

$$
\tanh \left(\frac{\omega^{N}-\omega}{2}\right)=\operatorname{coth}\left(\frac{\beta-\beta^{*}}{2}\right) \tanh \left(\frac{\vartheta-\vartheta^{*}}{2}\right)
$$

The choice of β^{*} in (3) forces the new solution ω^{N} to be a real function defined on Σ. The new solution ω^{N} is called the Bianchi-Bäcklund transformation of ω.

3 Complexified tangential line congruence for CGC $K=1$ surface in $\mathbb{R}^{2,1}$

Now we switch our attention to $\mathbb{R}^{2,1}$. Let $\Sigma \subset \mathbb{R}^{2}$ be a simply-connected domain with coordinates $(u, v) \in \Sigma$, and let $f: \Sigma \rightarrow \mathbb{R}^{2,1}$ be an immersion with conformal curvature line coordinates (u, v). Since $f(u, v)$ is conformal, for some function $\omega: \Sigma \rightarrow \mathbb{R}$,

$$
\mathrm{d} s^{2}=e^{2 \omega}\left(\mathrm{~d} u^{2}+\mathrm{d} v^{2}\right)
$$

We choose a timelike unit normal vector field $n=e_{3}: \Sigma \rightarrow \mathbb{H}^{2}$, and let e_{1} and e_{2} be the unit tangent vectors in the direction of f_{u} and f_{v}, respectively. We further assume that the mean curvature $H=\frac{1}{2}$ and the Hopf differential factor $Q=-\frac{1}{4}$. Then the Gauss-Weingarten equations become

$$
\left\{\begin{array}{l}
f_{u u}=\omega_{u} f_{u}-\omega_{v} f_{v}-e^{\omega} \sinh \omega n \\
f_{v v}=-\omega_{u} f_{u}+\omega_{v} f_{v}-e^{\omega} \cosh \omega n \\
f_{u v}=\omega_{v} f_{u}+\omega_{u} f_{v} \\
n_{u}=-e^{-\omega} \sinh \omega f_{u} \\
n_{v}=-e^{-\omega} \cosh \omega f_{v}
\end{array}\right.
$$

Therefore, the integrability condition, or the Gauss equation, becomes

$$
\begin{equation*}
\Delta \omega-\sinh \omega \cosh \omega=0 \tag{4}
\end{equation*}
$$

Now, we take g to be the parallel surface to f that is a constant Gaussian curvature $K=1$ surface, i.e. $g=f-n$. Following Bianchi's construction in [2], we construct a new constant Gaussian curvature $K=1$ from g as follows.

First, we define the complexified tangential line congruence g^{N} of g as

$$
g^{N}:=g+\lambda\left(\cos \varphi e_{1}+\sin \varphi e_{2}\right)
$$

for some constant $\lambda \in \mathbb{C} \backslash\{0\}$ and some function $\varphi: \Sigma \rightarrow \mathbb{C}$. Then we demand that

1. The vector $g^{N}-g$ are tangent to both surfaces at their respective points, and
2. The normal vectors e_{3} and e_{3}^{N} have a constant angle σ with each other at corresponding points.

Using these two conditions and (4), we calculate that

$$
\operatorname{coth}^{2} \sigma+\frac{1}{\lambda^{2}}=1
$$

Hence, we can define β and ϑ so that

$$
i \sinh \beta=\operatorname{coth} \sigma, \quad \cosh \beta=\frac{1}{\lambda}, \quad i \vartheta=\varphi
$$

and obtain the Bianchi partial differential equations (PDE):

$$
\left\{\begin{array}{l}
(\vartheta-\omega)_{z}=\frac{1}{2} e^{\beta} \sinh (\vartheta+\omega) \tag{5}\\
(\vartheta+\omega)_{\bar{z}}=\frac{1}{2} e^{-\beta} \sinh (\vartheta-\omega)
\end{array}\right.
$$

where $z:=u+i v \in \mathbb{C}$. Then a direct calculation gives us the following theorem.
Proposition 1. Let ω be a solution to (4), and let ϑ be defined via (5). Then ϑ is also a solution to (4), i.e.

$$
\Delta \vartheta-\sinh \vartheta \cosh \vartheta=0 .
$$

4 Bianchi permutability theorem

We now aim to show that following Bianchi in [1] and [2], Bianchi permutability theorem also holds for the transformation as defined in Proposition 1. Let ω_{1}^{N} and ω_{2}^{N} be twice successive transformations satisfying the following schematic diagram:

Through direct calculation, we can show that

$$
\omega^{N}=\omega_{1}^{N}=\omega_{2}^{N}
$$

if and only if

$$
\tanh \left(\frac{\omega^{N}-\omega}{2}\right)=\operatorname{coth}\left(\frac{\beta_{1}-\beta_{2}}{2}\right) \tanh \left(\frac{\vartheta_{1}-\vartheta_{2}}{2}\right) .
$$

and hence we have the following theorem.
Theorem 2. Let ω be a solution to

$$
\Delta \omega-\sinh \omega \cosh \omega=0
$$

and let ϑ_{1} and ϑ_{2} be defined via Bianchi PDE using β_{1} and β_{2}, respectively. Then there exists a fourth solution ω^{N} such that the following schematic diagram holds:

Moreover, ω^{N} can be found using the following algebraic expression:

$$
\tanh \left(\frac{\omega^{N}-\omega}{2}\right)=\operatorname{coth}\left(\frac{\beta_{1}-\beta_{2}}{2}\right) \tanh \left(\frac{\vartheta_{1}-\vartheta_{2}}{2}\right)
$$

5 Bianchi-Bäcklund transformation for spacelike CMC surfaces in $\mathbb{R}^{2,1}$

In general, since we used complexifed tangential line congruence, the new solution constructed via Bianchi PDE is complex, even if the original solution is real. However, using Theorem 2 and performing twice successive transformations, we may force the solution to be real by letting $\beta_{1}=\beta$ and $\beta_{2}=-\bar{\beta}$ for some complex $\beta \in \mathbb{C} \backslash\{0\}$. We call such an ω^{N} a Bianchi-Bäcklund transformation of ω. Therefore, given any spacelike CMC surface, we obtain a new spacelike CMC surface via the following recipe:

1. From a given spacelike CMC surface in $\mathbb{R}^{2,1}$, recover the metric function ω satisfying (4).
2. Choose any nonzero β and perform a Bianchi-Bäcklund transformation via Theorem 2 to obtain a new real solution ω^{N}.
3. Construct a new spacelike CMC surface having ω^{N} as its metric function.

Figure 1: Example of a Bianchi-Bäcklund transformation for spacelike CMC surfaces in $\mathbb{R}^{2,1}$. On the left is hyperbolic cylinder, corresponding to the vacuum solution $\omega \equiv 0$; on the right is a Bianchi-Bäcklund transformation of hyperbolic cylinder, an analogue of bubbletons in \mathbb{R}^{3}.

References

[1] L. Bianchi. Sulla trasformazione di Bäcklund per le superficie pseudosferiche. Rend. Lincei, 5(1):3-12, 1892.
[2] L. Bianchi. Lezioni di Geometria Differenziale, Volume II. Enrico Spoerri, Pisa, 1903.
[3] C. Gu, H. Hu and Z. Zhou. Darboux transformations in integrable systems. Springer, Dordrecht, 2005.
[4] S.-P. Kobayashi. Bubbletons in 3-dimensional space forms. Balkan J. Geom. Appl., 9(1):44-68, 2004.
[5] S.-P. Kobayashi and J. Inoguchi. Characterizations of Bianchi-Bäcklund transformations of constant mean curvature surfaces. Internat. J. Math., 16(2):101-110, 2005.
[6] A. Mahler. Bianchi-Bäcklund transformations for constant mean curvature surfaces with umbilics theory and applications. Ph.D. Thesis, University of Toledo, 2002.
[7] C. Rogers and W. K. Schief. Bäcklund and Darboux transformations. Cambridge University Press, Cambridge, 2002.
[8] I. Sterling and H. C. Wente. Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ. Math. J., 42(4):1239-1266, 1993.

[^0]: ${ }^{*}$ This presentation is based on the jointwork with Mitsugu Abe (Kobe University) and Yuta Ogata (National Institute of Technology. Okinawa College).

