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1 Background

Given a surface with constant negative Gaussian curvature (CNC) in the Euclidean 3-space R3,
one may use the Bäcklund transformation to obtain a new CNC surface using tangential line
congruence depending on a spectral parameter. It is using this transformation that Bianchi proved
the Bianchi permutability theorem in [1], which says that given a seed CNC surface f , and two
Bäcklund transforms fβ1

and fβ2
using spectral parameters β1 and β2 respectively, there exists a

fourth surface f̂ such that
f̂ = (fβ1

)β2
= (fβ2

)β1
,

or schematically,
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Using the permutability, in [2], Bianchi considered twice successive transformations using com-
plexified tangential line congruence to obtain a constant positive Gaussian curvature surface (CPC)
from a given CPC surface, called the Bianchi-Bäcklund transformation. From this, one may con-
struct a new constant mean curvature (CMC) surface from a given CMC surface, using the fact
that a CMC surface is a parallel surface of a CPC surface.

In this presentation, we give a method of constructing a new spacelike CMC surface from a
given one in Minkowski 3-space R2,1 by developing an analogue of the classical Bianchi-Backlund
transformation, and show that Bianchi permutability also holds for this transformation.

2 Bianchi-Bäcklund transformation for CMC surfaces in R3

We first briefly review the Bianchi-Bäcklund transformation in R3. (For further details, see [2],
[8], or [5], for example.) Let Σ ⊂ R2 be a simply-connected domain with coordinates (u, v) ∈ Σ,
and let f : Σ→ R3 be a conformally immersed surface with curvature line coodinates (u, v). Since
f(u, v) is conformal, for some function ω : Σ→ R,

ds2 = e2ω(du2 + dv2).

We choose a unit normal vector field e3 : Σ → S2. We further assume that the mean curvature
H = 1

2 and the Hopf differential factor Q = − 1
4 . Then integrability condition, or the Gauss

equation, becomes
∆ω + sinhω coshω = 0, (1)

the well-known sinh-Gordon equation.
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By considering complexified tangential line congruence of a given surface with metric function
ω satisfying (1), one may construct another solution ϑ : Σ→ C to the same equation by solving{

(ϑ− ω)z = 1
2e
β sinh(ϑ+ ω)

(ϑ+ ω)z̄ = − 1
2e

−β sinh(ϑ− ω)
(2)

where β is some constant in R, and z = u+ iv.
To obtain another real solution to (1), we perform two iterations of this as follows: We first

obtain ϑ and ϑ∗ from a given solution ω using the constants β and β∗, respectively, via (2), where

β∗ := πi− β. (3)

Then by performing another iteration, starting with ϑ and ϑ∗, and using β∗ and β, respectively,
we obtain a new solution ωN via the Bianchi permutability formula

tanh

(
ωN − ω

2

)
= coth

(
β − β∗

2

)
tanh

(
ϑ− ϑ∗

2

)
.

The choice of β∗ in (3) forces the new solution ωN to be a real function defined on Σ. The new
solution ωN is called the Bianchi-Bäcklund transformation of ω.

3 Complexified tangential line congruence for CGC K = 1
surface in R2,1

Now we switch our attention to R2,1. Let Σ ⊂ R2 be a simply-connected domain with coordinates
(u, v) ∈ Σ, and let f : Σ→ R2,1 be an immersion with conformal curvature line coordinates (u, v).
Since f(u, v) is conformal, for some function ω : Σ→ R,

ds2 = e2ω(du2 + dv2).

We choose a timelike unit normal vector field n = e3 : Σ → H2, and let e1 and e2 be the unit
tangent vectors in the direction of fu and fv, respectively. We further assume that the mean
curvature H = 1

2 and the Hopf differential factor Q = − 1
4 . Then the Gauss-Weingarten equations

become 

fuu = ωufu − ωvfv − eω sinhω n

fvv = −ωufu + ωvfv − eω coshω n

fuv = ωvfu + ωufv

nu = −e−ω sinhωfu

nv = −e−ω coshωfv.

Therefore, the integrability condition, or the Gauss equation, becomes

∆ω − sinhω coshω = 0. (4)

Now, we take g to be the parallel surface to f that is a constant Gaussian curvature K = 1
surface, i.e. g = f − n. Following Bianchi’s construction in [2], we construct a new constant
Gaussian curvature K = 1 from g as follows.

First, we define the complexified tangential line congruence gN of g as

gN := g + λ(cosϕe1 + sinϕe2)

for some constant λ ∈ C \ {0} and some function ϕ : Σ→ C. Then we demand that

1. The vector gN − g are tangent to both surfaces at their respective points, and

2. The normal vectors e3 and eN3 have a constant angle σ with each other at corresponding
points.



Using these two conditions and (4), we calculate that

coth2 σ +
1

λ2
= 1.

Hence, we can define β and ϑ so that

i sinhβ = cothσ, coshβ =
1

λ
, iϑ = ϕ,

and obtain the Bianchi partial differential equations (PDE):{
(ϑ− ω)z = 1

2e
β sinh(ϑ+ ω)

(ϑ+ ω)z̄ = 1
2e

−β sinh(ϑ− ω)
(5)

where z := u+ iv ∈ C. Then a direct calculation gives us the following theorem.

Proposition 1. Let ω be a solution to (4), and let ϑ be defined via (5). Then ϑ is also a solution
to (4), i.e.

∆ϑ− sinhϑ coshϑ = 0.

4 Bianchi permutability theorem

We now aim to show that following Bianchi in [1] and [2], Bianchi permutability theorem also
holds for the transformation as defined in Proposition 1. Let ωN1 and ωN2 be twice successive
transformations satisfying the following schematic diagram:
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Through direct calculation, we can show that

ωN = ωN1 = ωN2

if and only if

tanh

(
ωN − ω

2

)
= coth

(
β1 − β2

2

)
tanh

(
ϑ1 − ϑ2

2

)
.

and hence we have the following theorem.

Theorem 2. Let ω be a solution to

∆ω − sinhω coshω = 0,

and let ϑ1 and ϑ2 be defined via Bianchi PDE using β1 and β2, respectively. Then there exists a
fourth solution ωN such that the following schematic diagram holds:
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Moreover, ωN can be found using the following algebraic expression:

tanh

(
ωN − ω

2

)
= coth

(
β1 − β2

2

)
tanh

(
ϑ1 − ϑ2

2

)
.



5 Bianchi-Bäcklund transformation for spacelike CMC sur-
faces in R2,1

In general, since we used complexifed tangential line congruence, the new solution constructed
via Bianchi PDE is complex, even if the original solution is real. However, using Theorem 2 and
performing twice successive transformations, we may force the solution to be real by letting β1 = β
and β2 = −β̄ for some complex β ∈ C\{0}. We call such an ωN a Bianchi-Bäcklund transformation
of ω. Therefore, given any spacelike CMC surface, we obtain a new spacelike CMC surface via the
following recipe:

1. From a given spacelike CMC surface in R2,1, recover the metric function ω satisfying (4).

2. Choose any nonzero β and perform a Bianchi-Bäcklund transformation via Theorem 2 to
obtain a new real solution ωN .

3. Construct a new spacelike CMC surface having ωN as its metric function.

Figure 1: Example of a Bianchi-Bäcklund transformation for spacelike CMC surfaces in R2,1. On
the left is hyperbolic cylinder, corresponding to the vacuum solution ω ≡ 0; on the right is a
Bianchi-Bäcklund transformation of hyperbolic cylinder, an analogue of bubbletons in R3.
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