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1 Introduction

In this presentation, we focus on three distance functions in knot theory. They are
the Gordian distance, the algebraic Gordian distance and the Alexander polynomial
distance. A knot is defined to be an oriented circle embedded in the three-sphere S3.
A crossing change on a knot is often called the unknotting operation. The Gordian
distance between two knots is defined to be the minimum number of crossing changes
needed to turn one knot into the other. Analogously, the other two distance functions
of Seifert matrices and Alexander polynomials respectively are defined. These three
distance functions turn the sets of knots, S-equivalence classes of Seifert matrices and
Alexander polynomials into metric spaces. We are interested in the question when
these distances can be one.

Figure 1: unknotting operation

2 The Gordian distance

We use dG(K,K ′) to denote the Gordian distance between two knots K and K ′ in S3.
The unknotting number u(K) of a knot K is defined by u(K) = dG(K,O), where O is
the trivial knot.

The studies of unknotting number and the Gordian distance are often related to
the homology groups of covering spaces of knots. Pairing relations between homology
classes encode the structures of those covering spaces. There are studies showing that
different pairing relations have certain restrictions when the Gordian distance is one
for two knots. Lickorish [11] used surgery construction of the double branched cover
and showed an unknotting number one knot has an obstruction on the linking form
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Figure 2: dG(31, 51) = 1

of its double branched cover. Murakami [12] used a similar technique to generalize
Lickorish’s result to two knots with Gordian distance one and showed their double
branched covers have certain linking forms.

There are studies connecting the Gordian distance with a variety of knot invariants.
Murasugi [14] gave a lower bound for the unknotting number in terms of the knot
signature. Stoimenow [17] connected the Jones polynomial and the unknotting number.
Nakanishi [15] found an obstruction for the Seifert matrices of unknotting number two
knots. More algebraic techniques are used to find obstructions for a pair of knots of
Gordian distance one. Kawauchi [9] used residue modules and determinant rings to
give an obstruction on the Alexander polynomials of a pair of knots with Gordian
distance one. With these restrictions, it becomes possible to tell whether two given
knots could be transformed into each other by one crossing change.

3 The algebraic Gordian distance

A Seifert matrix V is defined to be a square integer matrix satisfying det(V −V T ) = 1.
A Seifert matrix V ′ is said to be congruent to V if V ′ = PV P T for a unimodular
matrix P . A Seifert matrix V ′ is called an enlargement of V if

V ′ =

0 0 0
1 n M
0 NT V

 or

0 1 0
0 n M
0 NT V

 ,

where M and N are row vectors, and n is some integer. Then V is a reduction of V ′.
The S-equivalence is an equivalence relation generated by congruences, enlargements
and reductions. The S-equivalence class of V , denoted by [V ], is all Seifert matrices
S-equivalent to V ; see [16,19].

Motivated by the unknotting operation, Murakami defined the algebraic unknotting

operation in [13]. It assigns a Seifert matrix V to

ε 0 0
1 n M
0 NT V

 for ε = ±1; see [13].

Let [V ] and [V ′] be two S-equivalence classes. The algebraic Gordian distance
daG([V ], [V ′]) between [V ] and [V ′] is defined to be the minimum number of algebraic
unknotting operations needed to deform a matrix in [V ] to a matrix in [V ′].



For a knot K in S3, a Seifert surface of K is a connected orientable surface bounded
by K. Given a Seifert surface F , we can choose a generator system x1, x2, . . . , x2g of
H1(F ), where g is the genus of F . Let lk denote the linking number. A Seifert matrix
for F can be calculated by V = (vij) with vij = lk(xi, x

+
j ) for i, j = 1, 2, . . . , 2g,

where x+
j is the result of translating a representative cycle for xj into S3 − F along

the positive side of F . The Alexander polynomial ∆K of K is defined by the equation
∆K = det(t

1
2V − t−

1
2V T ). Note that any two S-equivalent Seifert matrices have the

same Alexander polynomial. Let [K] denote the S-equivalence class of a Seifert matrix
of K. In [13], Murakami proved dG(K1, K2) ≥ daG([K1], [K2]), relating the two distance
functions.

x1 x2

+

( x+
1 x+

2

x1 1 0
x2 −1 1

)

Figure 3: a Seifert surface and Seifert matrix for 31

The Alexander module AV of a Seifert matrix V is defined by AV = Λ2g/(tV −
V T )Λ2g, where Λ is the Laurent polynomial ring Z[t, t−1]. Then we know AV

∼=
H1(X̃(K);Z), where X̃(K) is the infinite cyclic cover of the complement of K. We
regard AV as a Λ-module, with t acting on X̃(K) as the deck transformation. The
Blanchfield pairing of AV is a map βV : AV × AV −→ Q(Λ)/Λ. It is a sesquilin-
ear form, meaning βV (px, qy) = pq̄βV (x, y), where q̄ = q|t=t−1 ; see [1]. Note that
(AV , βV ) ∼= (AV ′ , βV ′) if V is S-equivalent to V ′.

Analogously to the unknotting number, the algebraic unknotting number ua([V ])
is defined to be daG([V ], [O]), where [O] is the S-equivalence class of the 0× 0 matrix.
Murakami proved if ua([K]) = 1, then there exists a generator α for the Alexander mod-
ule of K such that the Blanchfield pairing βV (α, α) = ± 1

∆K
. Moreover, the Blanchfield

pairing is given by the 1× 1-matrix (± 1
∆K

); see [13, Theorem 5, p.288].

4 The Alexander polynomial distance

Kawauchi defined the Alexander polynomial distance ρ(∆,∆′) between two Alexander
polynomials ∆ and ∆′ by the equation

ρ(∆,∆′) = min
K∆,K∆′

dG(K∆, K∆′),

where K∆ and K∆′ are knots with Alexander polynomials ∆ and ∆′, respectively [9].



Note that ρ(∆,∆′) ≤ 2; see [9]. This is because there exists an unknotting num-
ber one knot for any given Alexander polynomial; see [10]. In [4], it is proved that
daG([K1], [K2]) ≥ ρ(∆K1 ,∆K2).

A question of Jong asks to find two Alexander polynomials ∆ and ∆′ such that
ρ(∆,∆′) = 2; see [6–9]. Kawauchi gave a restriction for a pair of Alexander polynomials
of degree two such that their distance is one.

5 The Blanchfield pairing of two Seifert matrices of

distance one

In [4], by constructing two Seifert matrices of algebraic Gordian distance one and
finding the restriction of their Blanchfield pairing, the following theorem is deduced.

Theorem 5.1 ([4]). Let V and V ′ be two Seifert matrices. If the algebraic Gordian
distance daG([V ], [V ′]) = 1, then there exist a ∈ AV and a′ ∈ AV ′ such that βV (a, a) ≡
±∆V ′

∆V

(mod Λ) and βV ′(a
′, a′) ≡ ±∆V

∆V ′
(mod Λ).

The following corollaries to Theorem 5.1 give further results on the obstructions of
the algebraic Gordian distance and the Alexander polynomial distance.

Corollary 5.2 ([4]). If ua([V ]) = daG([V ], [V ′]) = 1, then there exists c ∈ Λ such that
±∆V ′ ≡ cc̄ (mod ∆V ).

Corollary 5.3 ([4]). Let ∆V and ∆V ′ be the Alexander polynomials of Seifert matrices
V and V ′, respectively, with ∆V = h(t + t−1) + 1 − 2h, |h| being a prime or 1 and
∆V ′ ≡ d (mod ∆V ), where d ∈ Z. If ua([V ]) = 1 and if the equation for x and y
h2x2 + y2 + (2h − 1)xy = ±d does not have an integer solution, then the algebraic
Gordian distance daG([V ], [V ′]) 6= 1.

If there is an Alexander polynomial that is realized only by unknotting number one
matrices, we can use Corollary 5.3 to find many examples to answer Jong’s question.

6 Determinant of 2 × 2 Seifert matrices with alge-

braic unknotting number one

In [4], the following lemmas on Seifert matrices of algebraic unknotting number one
are proven.

Lemma 6.1 ([4]). If a 2× 2 Seifert matrix V has detV ∈ {1, 2, 3, 5}, then ua(V ) = 1.

Lemma 6.2 ([4]). For a Seifert matrix V , if ∆V = ht + ht−1 + 1 − 2h with h ∈
{1, 2, 3, 5}, then ua(V ) = 1.



The two lemmas are based on Trotter’s results in [18,19].

• Any 2× 2 Seifert matrix is congruent to a matrix of the form

(
a m+ 1
m c

)
; see

[19, p.203].

• Any 2 × 2 positive definite Seifert matrix is congruent to

(
a m+ 1
m c

)
, where

0 < 2m+ 1 ≤ min(a, c); see [19, p.204].

• If ∆V = ht + ht−1 + 1− 2h, V is S-equivalent to a 2× 2 Seifert matrix V ′ with
detV ′ = h ; see [18, pp.484-486].

We refer to [2, 5] for more information about the classification of binary quadratic
forms, with which we can find more determinants that can be realized only by algebraic
unknotting number one Seifert matrices.

By Corollary 5.3, we can find many examples of ρ(∆,∆′) = 2.

Corollary 6.3. The Alexander polynomial distance ρ(t+t−1−1,∆) = 2 if ∆ ≡ 4m+2
(mod t+ t−1 − 1) for some m ∈ Z.

Now we give an example for this corollary. The following figures are diagrams of
the knots 31 and 930, respectively [3].

∆31 = t+ t−1 − 1 ∆930 = −t3 − t−3 + 5t2 + 5t−2 − 12t− 12t−1 + 17

We have ∆31 = t+ t−1− 1 and ∆930 = −t3− t−3 + 5t2 + 5t−2− 12t− 12t−1 + 17, so
∆930 = (−t2 − t−2 + 4t+ 4t−1 − 7)∆31 + 2. By Corollary 6.3, we obtain dG(K1, K2) ≥
daG([K1], [K2]) ≥ ρ(∆31 ,∆930) = 2 for any pair of knots K1 and K2 with ∆K1 = ∆31

and ∆K2 = ∆930 .
Moreover, this example demonstrates how our result helps in calculating the al-

gebraic Gordian distance of two given S-equivalent classes. We know ua([930]) =
ua([31]) = 1. It gives daG([31], [930]) ≤ ua([31]) + ua([930]) = 2. Therefore, we have
daG([31], [930]) = 2.
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