ホモトピー代数を用いたファイバー東の特性類の構成

松雪敬寬 (Takahiro Matsuyuki)*

概要

本稿では、ホモトピー代数的な構造の変形を用いて、導分のなす Lie 代数のコホモロジー類として、可微分ファイバー束の特性類を構成する方法について紹介する。ファイブレーションの特性類が導分のコホモロジーで記述されることは、ホモトピー論における結果として知られているが、その Chern-Weil 理論的な構成について考える。特に、曲面束に対してはよく知られた特性類を得ることができる。

1 復習:ベクトル東の特性類

ファイバー束の特性類について述べる前に、よく知られているベクトル束の特性類について復習しておく.

1.1 ホモトピー論的構成

ホモトピー論的には、n次元有向実ベクトル東 $E \rightarrow B$ が与えられたとき、分類写像と呼ばれる連続写像

$$B \to BSO(n)$$

が存在し、この写像で普遍束 $ESO(n) \to BSO(n)$ を引き戻すと $E \to B$ と同型なベクトル束が得られる.この写像から、コホモロジー間の準同型

$$\Phi: H^{\bullet}(BSO(n)) \to H^{\bullet}(B)$$

が誘導される。ここで,分類写像はホモトピーを除いて一意的であるからこのコホモロジー間の準同型 Φ は分類写像の選び方によらない。したがって,写像 Φ はベクトル束の不変量である。これを特性写像と呼ぶことにする。コホモロジー類 $c\in H^{ullet}(BSO(n))$ が与えられるたびに,ベクトル束の不変量 $c(E):=\Phi(c)\in H^{ullet}(B)$ が得られる。この類 c あるいは c(E) を特性類と呼ぶ。以下では,簡単のため,コホモロジーは実係数のみを考える。

分類空間 BSO(n) は Grassman 多様体と同値になり、そのコホモロジーは SO(n)-不変多項式に全体になる:

$$H^{\bullet}(BSO(n); \mathbb{R}) = I(SO(n)) = S(\mathfrak{so}(n)^*)^{SO(n)}$$

但し, S(V) は線形空間 V が生成する対称代数である. ところで, これは Pontrjagin 多項式 (類) p_i と Euler 多項式 (類) e により生成されていた:

$$I(SO(2n)) = \mathbb{R}[p_1, \dots, p_n], \quad I(SO(2n+1)) = \mathbb{R}[p_1, \dots, p_{n-1}, e].$$

^{*} 東京工業大学理学院数学系数学コース, e-mail: matsuyuki.t.aa@m.titech.ac.jp

1.2 Chern-Weil 理論的構成

可微分有向ベクトル束 $E \to B$ に対して、同伴する主 SO(n)-束 $P \to B$ の接続 ∇ を一つ与える.このとき、対応する曲率形式 $\Omega \in \mathcal{A}^2(P;\mathfrak{so}(n))$ が得られる.任意の n 次不変多項式 $f \in I(SO(n))$ に対して、微分形式

$$\Phi_{\nabla}(f) := f(\underbrace{\Omega, \dots, \Omega}_{n}) \in \mathcal{A}^{2n}(P/SO(n)) = \mathcal{A}^{2n}(B)$$

が得られる.これは閉形式であり、そのコホモロジー類は接続の取り方によらないことが分かる.さらに、この 構成

$$\Phi_{\nabla}: I(SO(n)) \to \mathcal{A}^{\bullet}(B)$$

がコホモロジーに誘導する写像 $\Phi:I(SO(n))\to H_{DR}^{ullet}(B)$ は、これは前節の意味での写像と一致していることが知られている。言い換えると、可微分ベクトル束に対しては、接続を与えるごとに特性類の代表元を自然に与えることができる。

2 Chern-Weil 的に構成されるファイバー束の特性類

ファイバー束 $E \to B$ に対して、ファイバー束 (の垂直接束) の計量を一つ与えたとする.この計量はファイバーの Riemann 計量 (の類) の空間 B をパラメータとする変形を与えていると考えることができる.

一方で、基点付き多様体 X に計量が与えられるたびに Chen 展開と呼ばれるホロノミーを構成することができる.

定理 1(Chen [1, 2]) Riemann 多様体 X に対して, $H = H_1(X; \mathbb{R})$ の生成する完備 Hopf 代数 $\hat{T}H$ の完備 Hopf イデアル I と完備 Hopf 代数同型 $\hat{\mathbb{R}}_{\pi_1}(X) \simeq \hat{T}H/I$ が得られる. (これを Chen 展開と呼ぶ.)

(ファイバーとなる) 基点付き多様体 X の Chen 展開全体を $\Theta(X)$ とする. この集合は, 有限次元多様体の逆極限とみなせ, 通常の多様体と同様に微分形式等を定義できる. Chen 展開の空間 $\Theta(X)$ には, 多様体 X の写像類群

$$\mathcal{M}(X) := \{ 基点と向きを保つ X の微分同相のアイソトピー類 \}$$

が作用する.

以上の設定において、ファイバー束の計量を用いて、各ファイバーごとに Chen 展開をとることにより、滑らかな写像

$$B \to \Theta(X)/\mathcal{M}(X)$$

を得る。ここで,写像類群 $\mathcal{M}(X)$ は変換関数分の誤差に相当する.ファイバー束の計量は道でつなぐことができるので,この写像が deRham コホモロジーに誘導する写像

$$H_{DR}^{\bullet}(\Theta(X)/\mathcal{M}(X)) \to H_{DR}^{\bullet}(B)$$

は計量によらない.

コホモロジー $H_{DR}^{ullet}(\Theta(X)/\mathcal{M}(X))$ について考える。簡単のため、(写像類群を適切に制限するなどして) 計量に対するイデアル I が固定できたとする。 つまり、イデアル I を固定した Chen 展開全体を $\Theta(X,I)$ としたとき、ファイバー束の計量が $B\to\Theta(X,I)$ を与えたとする。 このとき、 $H_{DR}^{ullet}(\Theta(X)/\mathcal{M}(X))$ を

 $H_{DR}^{ullet}(\Theta(X,I)/\mathcal{M}(X))$ に置き換えて考える. 空間 $\Theta(X,I)$ には Hopf 代数 $\hat{T}H/I$ の自己同型群 (のある部分群)

$$\mathrm{IAut}(\hat{T}H/I) := \{ f \in \mathrm{Aut}(\hat{T}H/I); f(H) \subset \hat{T}^{\geq 2}H/I \}$$

が自由かつ推移的に作用する. よって, $\Theta(X,I)$ は Muarer-Cartan 形式

$$\eta \in \mathcal{A}^1(\Theta(X,I); \operatorname{Der}^+(\hat{T}H/I))$$

を持つ. ここで, 導分の (ある部分) Lie 代数

$$\operatorname{Der}^+(\hat{T}H/I) := \{ X \in \operatorname{Der}(\hat{T}H/I); X(H) \subset \hat{T}^{\geq 2}H/I \}$$

は Lie 群 $\mathrm{IAut}(\hat{T}H/I)$ の Lie 代数であることに注意する. さらに、この平坦接続を用いて、Lie 代数 $\mathrm{Der}^+(\hat{T}H/I)$ の Chevalley-Eilenberg 複体 (次節にて後述) からのチェイン写像

$$C_{CE}^{\bullet}(\operatorname{Der}^+(\hat{T}H/I)) \to \mathcal{A}^{\bullet}(\Theta(X,I))$$

が得られる。さらに、この写像は Maurer-Cartan 形式 η の左不変性から、 $\mathcal{M}(X)$ -同変である。自然な作用 $\mathcal{M}(X) \to \mathrm{GL}_{\mathbb{Z}}(H)$ の像を G とすると、以上をまとめて次の構成を得る。

定理2 (M-Terashima [5]) 基点付き有向ファイバー東 $E \to B$ がファイバー (X,*) のイデアル I に関す条件を満たすとする. このファイバー東の計量が与えられるたびに、チェイン写像

$$C_{CE}^{\bullet}(\operatorname{Der}^+(\hat{T}H/I))^G \to \mathcal{A}^{\bullet}(B)$$

が得られ、この写像がコホモロジーに誘導する写像は計量によらない.

ファイバーが曲面の場合は、[3]の結果に相当し、実際に非自明な特性類を与えていることが分かる.

3 Chevalley-Eilenberg 複体

前節で使った Chevalley-Eilenberg 複体について述べておく. Lie 代数 g について, g が生成する外積代数を

$$C_{CE}^{\bullet}(\mathfrak{g}) := \Lambda^{\bullet}\mathfrak{g}$$

とし、微分を $c \in C^{n-1}_{CE}(\mathfrak{g}), X_1, \ldots, X_n \in \mathfrak{g}$ に対して、

$$d_{CE}(c)(X_1, \dots, X_n) = \sum_{i < j} (-1)^{i+j} c([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_n)$$

と定義する. このとき, $(C_{CE}^{\bullet}(\mathfrak{g}), d_{CE})$ はチェイン複体になる. これを **Chevalley-Eilenberg 複体**と呼ぶ. このコホモロジーは Lie 代数 \mathfrak{g} のコホモロジーと呼ばれる.

ここで特性類の構成で用いたのは次の性質である: 多様体 M について, $\mathfrak g$ 係数の微分形式 $\eta\in A^1(M;\mathfrak g)$ であり, 平坦性

$$d\eta + \frac{1}{2}[\eta, \eta] = 0$$

を満たすものが与えられたとする. このとき, $C^{ullet}_{CE}(\mathfrak{g}) \to A^{ullet}(M)$ を

$$c \mapsto c(\eta, \dots, \eta)$$

とすると、これはチェイン写像となる.

4 これからの研究

[6] によれば、単連結ファイバー束の特性類をある導分のコホモロジーによってホモトピー論的に構成することができる。よって、§2 で構成した特性類は、ファイバーの 1 次以上のホモロジーの情報を用いて、単連結束の場合にも拡張できるはずである。

Chen 展開は、多様体の deRham 複体の Hodge 分解から得られる C_{∞} -極小モデルの情報の一部である. よって、 C_{∞} -極小モデルの空間全体 Q(X) を Chen 展開の空間 $\Theta(X)$ の代わりに用いることにより、より豊富な情報をもつ特性類が得られることが期待される. [4] では、Q(X) の "連結成分" を考えることにより、同様の構成ができることが分かっている。 さらに、Q(X) の連結成分より細かいホモトピーの情報を用いて、[6] にあるような特性類を構成することを考えている.

参考文献

- [1] K.T. Chen, Extension of C^{∞} function algebra by integrals and Malcev completion of π_1 , Advances in Math. 23 (1977), no. 2, 181–210.
- [2] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831-879.
- [3] N. Kawazumi, Harmonic Magnus Expansion on the Universal Family of Riemann Surfaces, arXiv:math/0603158.
- [4] H. Kajiura, T. Matsuyuki, and Y. Terashima, Homotopy theory of A_{∞} -algebras and characteristic classes of fiber bundles, arXiv:1605.07904.
- [5] T. Matsuyuki, and Y. Terashima, Characteristic classes of fiber bundles, Algebr. Geom. Topol. 16 (2016) 3029–3050.
- [6] M. Schlessinger and J. Stasheff, Deformation theory and rational homotopy type, U. of North Carolina preprint, 1979, short version: The Lie algebra structure of tangent cohomology and deformation theory, J. Pure Appl. Alg., 38 (1985), 313–322.