ARITHMETIC AND DYNAMICAL DEGREES OF SEMIABELIAN VARIETIES

YOHSUKE MATSUZAWA（JOINT WORK WITH KAORU SANO）
松澤陽介（佐野薫との共同研究）

Let X be a smooth quasi－projective variety and $f: X \rightarrow X$ a ra－ tional self－map，both defined over $\overline{\mathbb{Q}}$ ．Having studied the arithmetic of the discrete dynamical system $f: X \rightarrow X \rightarrow X \rightarrow \cdots$ ，Silverman introduced the notion of arithmetic degree in［6］，which measures the growth rate of height functions along the f－orbits．Take a smooth pro－ jectivization \bar{X} of X and fix a Weil height function $h_{\bar{X}}$ on \bar{X} associated with an ample divisor（good references for height functions are［［ ，［ $\mathbb{Z}]$ ）． Write $h_{X}=\left.h_{\bar{X}}\right|_{X}$ ．Consider a point $x \in X$ such that for all $n \geq 0$ ， $f^{n}(x)$ is not contained in the indeterminacy locus of f ．The arithmetic degree of f at x is

$$
\alpha_{f}(x)=\lim _{n \rightarrow \infty} \max \left\{h_{X}\left(f^{n}(x)\right), 1\right\}^{1 / n}
$$

provided that the limit exists．This，of course，measures the exponential growth rate of $h_{X}\left(f^{n}(x)\right)$ as n goes to infinite and is independent of the choice of \bar{X} and $h_{\bar{X}}$ ．Kawaguchi－Silverman proved the existence of the limit when X is projective and f is a morphism［3］．The convergence in full generality is still open．

When f is dominant，it is conjectured in［6］，［4，Conjecture 6］that the arithmetic degree of any Zariski dense orbits are equal to the first dynamical degree δ_{f} of f ．This is the Kawaguchi－Silverman conjec－ ture，and we abbreviate it as KSC．Here，the first dynamical degree is a birational invariant of f which measures the geometric complex－ ity of the dynamical system．When X is projective and f a surjec－ tive morphism，δ_{f} is equal to the spectral radius of the linear map $f^{*}: N^{1}(X) \otimes_{\mathbb{Z}} \mathbb{R} \longrightarrow N^{1}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ where $N^{1}(X)$ is the group of divisors modulo numerical equivalence．

Let $A(f)$ be the set of arithmetic degrees of f ，i．e．

$$
A(f)=\left\{\alpha_{f}(x) \mid P \in X\right\}
$$

when we know $\alpha_{f}(x)$ exists for all $x \in X$ ．Keeping the conjecture in mind，we expect that we can describe this set in terms of geometric data of f ．When X is a toric variety and f is a self－rational map on X that is induced by a group homomorphism of the algebraic torus，the set $A(f)$ is completely determined by the matrix defining $f[6,5]$ ．

[^0]We prove KSC for self-morphisms of semi-abelian varieties and determine the set $A(f)$.

Theorem 1. Let X be a semi-abelian variety and $f: X \longrightarrow X$ a selfmorphism (not necessarily surjective), both defined over $\overline{\mathbb{Q}}$.
(1) Suppose f is surjective. Then for any point $x \in X$ with Zariski dense f-orbit, we have $\alpha_{f}(x)=\delta_{f}$.
(2) For every $x \in X$, the arithmetic degree $\alpha_{f}(x)$ exists. If we write $f=T_{a} \circ g$ where T_{a} is the translation by a point $a \in X$ and g is a group homomorphism, then $A(f)=A(g)$.
(3) Suppose f is a group homomorphism. Let $F(t)$ be the monic minimal polynomial of f as an element of $\operatorname{End}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ and

$$
F(t)=t^{e_{0}} F_{1}(t)^{e_{1}} \cdots F_{r}(t)^{e_{r}}
$$

the irreducible decomposition in $\mathbb{Q}[t]$ where $e_{0} \geq 0$ and $e_{i}>0$ for $i=1, \ldots, r$. Let $\rho\left(F_{i}\right)$ be the maximum among the absolute values of the roots of F_{i}. Then we have

$$
A(f) \subset\left\{1, \rho\left(F_{1}\right), \rho\left(F_{1}\right)^{2}, \ldots, \rho\left(F_{r}\right), \rho\left(F_{r}\right)^{2}\right\} .
$$

More precisely, set
$X_{i}=f^{e_{0}} F_{1}(f)^{e_{1}} \cdots F_{i-1}(f)^{e_{i-1}} F_{i+1}(f)^{e_{i+1}} \cdots F_{r}(f)^{e_{r}}(X)$.
Define

$$
A_{i}= \begin{cases}\left\{\rho\left(F_{i}\right)\right\} & \text { if } X_{i} \text { is an algebraic torus } \\ \left\{\rho\left(F_{i}\right)^{2}\right\} \quad \text { if } X_{i} \text { is an abelian variety } \\ \left\{\rho\left(F_{i}\right), \rho\left(F_{i}\right)^{2}\right\} \quad \text { otherwise }\end{cases}
$$

Then we have

$$
A(f)=\{1\} \cup A_{1} \cup \cdots \cup A_{r} .
$$

Theorem 2. Let X be a semi-abelian variety and $f: X \longrightarrow X$ a surjective morphism both defined over $\overline{\mathbb{Q}}$. Write $f=T_{a} \circ g$ where T_{a} is the translation by $a \in X$ and g is an isogeny. Suppose that the minimal polynomial of g has no irreducible factor that is a cyclotomic polynomial. Then there exists a point $b \in X$ such that, for any $x \in X$, the following are equivalent:
(1) $\alpha_{f}(x)=1$;
(2) $\# O_{f}(x)<\infty$;
(3) $x \in b+X(\overline{\mathbb{Q}})_{\text {tors }}$.

Here $X(\overline{\mathbb{Q}})_{\text {tors }}$ is the set of torsion points.
Remark 3. It is easy to see that when f is an isogeny, we can take $b=0$.

To prove the above theorems, we calculate the first dynamical degrees of self-morphisms of semi-abelian varieties.

Theorem 4. Let X be a semi-abelian variety over an algebraically closed field of characteristic zero.
(1) Let $f: X \longrightarrow X$ be a surjective group homomorphism. Let

$$
0 \longrightarrow T \longrightarrow X \xrightarrow{\pi} A \longrightarrow 0
$$

be an exact sequence with T a torus and A an abelian variety. Then f induces surjective group homomorphisms

$$
\begin{aligned}
f_{T}:=\left.f\right|_{T}: T & \longrightarrow T \\
g: A & \longrightarrow A
\end{aligned}
$$

with $g \circ \pi=\pi \circ f$. Then we have

$$
\delta_{f}=\max \left\{\delta_{g}, \delta_{f_{T}}\right\}
$$

Moreover, let P_{T} and P_{A} be the monic minimal polynomials of f_{T} and g as elements of $\operatorname{End}(T)_{\mathbb{Q}}$ and $\operatorname{End}(A)_{\mathbb{Q}}$ respectively. Then, $\delta_{f_{T}}=\rho\left(P_{T}\right)$ and $\delta_{g}=\rho\left(P_{A}\right)^{2}$.
(2) Let $f: X \longrightarrow X$ be a surjective homomorphism and $a \in X a$ point. Then $\delta_{T_{a} \circ f}=\delta_{f}$.
Remark 5. The description of $\delta_{f_{T}}$ and δ_{g} in Theorem $\mathbb{G}(1)$ might be well-known.

References

[1] Bombieri, E., Gubler, W., Heights in Diophantine geometry, Cambridge university press, 2007.
[2] Hindry, M., Silverman, J. H., Diophantine geometry. An introduction, Graduate Text in Mathematics, no. 20, Springer-Verlag, New York, 2000.
[3] Kawaguchi, S., Silverman, J. H., Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), 5009-5035.
[4] Kawaguchi, S., Silverman, J. H., On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math. 713 (2016), 21-48.
[5] Lin, J-L., On the arithmetic dynamics of monomial maps, arXiv:1704.02661.
[6] Silverman, J. H., Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), no. 2, 647-678.
[7] Silverman, J. H., Arithmetic and dynamical degrees on abelian varieties, preprint, 2015, http://arxiv.org/abs/1501.04205

Graduate school of Mathematical Sciences, the University of Tokyo, Komaba, Tokyo, 153-8914, Japan

E-mail address: myohsuke@ms.u-tokyo.ac.jp

[^0]: Graduate school of Mathematical Sciences，the University of Tokyo．

