ARITHMETIC AND DYNAMICAL DEGREES OF SEMIABELIAN VARIETIES

YOHSUKE MATSUZAWA (JOINT WORK WITH KAORU SANO) 松澤陽介 (佐野薫との共同研究)

Let X be a smooth quasi-projective variety and $f: X \to X$ a rational self-map, both defined over $\overline{\mathbb{Q}}$. Having studied the arithmetic of the discrete dynamical system $f: X \to X \to X \to \cdots$, Silverman introduced the notion of arithmetic degree in [6], which measures the growth rate of height functions along the f-orbits. Take a smooth projectivization \overline{X} of X and fix a Weil height function $h_{\overline{X}}$ on \overline{X} associated with an ample divisor (good references for height functions are [1, 2]). Write $h_X = h_{\overline{X}}|_X$. Consider a point $x \in X$ such that for all $n \geq 0$, $f^n(x)$ is not contained in the indeterminacy locus of f. The arithmetic degree of f at x is

$$\alpha_f(x) = \lim_{n \to \infty} \max\{h_X(f^n(x)), 1\}^{1/n}$$

provided that the limit exists. This, of course, measures the exponential growth rate of $h_X(f^n(x))$ as n goes to infinite and is independent of the choice of \overline{X} and $h_{\overline{X}}$. Kawaguchi-Silverman proved the existence of the limit when X is projective and f is a morphism [3]. The convergence in full generality is still open.

When f is dominant, it is conjectured in [6], [4, Conjecture 6] that the arithmetic degree of any Zariski dense orbits are equal to the first dynamical degree δ_f of f. This is the Kawaguchi-Silverman conjecture, and we abbreviate it as KSC. Here, the first dynamical degree is a birational invariant of f which measures the geometric complexity of the dynamical system. When X is projective and f a surjective morphism, δ_f is equal to the spectral radius of the linear map $f^*: N^1(X) \otimes_{\mathbb{Z}} \mathbb{R} \longrightarrow N^1(X) \otimes_{\mathbb{Z}} \mathbb{R}$ where $N^1(X)$ is the group of divisors modulo numerical equivalence.

Let A(f) be the set of arithmetic degrees of f, i.e.

$$A(f) = \{ \alpha_f(x) \mid P \in X \}$$

when we know $\alpha_f(x)$ exists for all $x \in X$. Keeping the conjecture in mind, we expect that we can describe this set in terms of geometric data of f. When X is a toric variety and f is a self-rational map on X that is induced by a group homomorphism of the algebraic torus, the set A(f) is completely determined by the matrix defining f [6, 5].

Graduate school of Mathematical Sciences, the University of Tokyo.

We prove KSC for self-morphisms of semi-abelian varieties and determine the set A(f).

Theorem 1. Let X be a semi-abelian variety and $f: X \longrightarrow X$ a selfmorphism (not necessarily surjective), both defined over $\overline{\mathbb{Q}}$.

- (1) Suppose f is surjective. Then for any point $x \in X$ with Zariski dense f-orbit, we have $\alpha_f(x) = \delta_f$.
- (2) For every $x \in X$, the arithmetic degree $\alpha_f(x)$ exists. If we write $f = T_a \circ g$ where T_a is the translation by a point $a \in X$ and g is a group homomorphism, then A(f) = A(g).
- (3) Suppose f is a group homomorphism. Let F(t) be the monic minimal polynomial of f as an element of End(X)⊗_ℤQ and

$$F(t) = t^{e_0} F_1(t)^{e_1} \cdots F_r(t)^{e_r}$$

the irreducible decomposition in $\mathbb{Q}[t]$ where $e_0 \geq 0$ and $e_i > 0$ for $i = 1, \ldots, r$. Let $\rho(F_i)$ be the maximum among the absolute values of the roots of F_i . Then we have

$$A(f) \subset \{1, \rho(F_1), \rho(F_1)^2, \dots, \rho(F_r), \rho(F_r)^2\}.$$

More precisely, set

$$X_{i} = f^{e_{0}} F_{1}(f)^{e_{1}} \cdots F_{i-1}(f)^{e_{i-1}} F_{i+1}(f)^{e_{i+1}} \cdots F_{r}(f)^{e_{r}}(X).$$

Define

$$A_{i} = \begin{cases} \{\rho(F_{i})\} & \text{if } X_{i} \text{ is an algebraic torus,} \\ \{\rho(F_{i})^{2}\} & \text{if } X_{i} \text{ is an abelian variety,} \\ \{\rho(F_{i}), \rho(F_{i})^{2}\} & \text{otherwise.} \end{cases}$$

Then we have

$$A(f) = \{1\} \cup A_1 \cup \cdots \cup A_r.$$

Theorem 2. Let X be a semi-abelian variety and $f: X \longrightarrow X$ a surjective morphism both defined over $\overline{\mathbb{Q}}$. Write $f = T_a \circ g$ where T_a is the translation by $a \in X$ and g is an isogeny. Suppose that the minimal polynomial of g has no irreducible factor that is a cyclotomic polynomial. Then there exists a point $b \in X$ such that, for any $x \in X$, the following are equivalent:

(1)
$$\alpha_f(x) = 1;$$

(2) $\# O_f(x) < \infty;$
(3) $x \in b + X(\overline{\mathbb{Q}})_{\text{tors}}.$

Here $X(\overline{\mathbb{Q}})_{\text{tors}}$ is the set of torsion points.

Remark 3. It is easy to see that when f is an isogeny, we can take b = 0.

To prove the above theorems, we calculate the first dynamical degrees of self-morphisms of semi-abelian varieties. **Theorem 4.** Let X be a semi-abelian variety over an algebraically closed field of characteristic zero.

(1) Let $f: X \longrightarrow X$ be a surjective group homomorphism. Let

 $0 \longrightarrow T \longrightarrow X \xrightarrow{\pi} A \longrightarrow 0$

be an exact sequence with T a torus and A an abelian variety. Then f induces surjective group homomorphisms

$$f_T := f|_T \colon T \longrightarrow T$$
$$g \colon A \longrightarrow A$$

with $g \circ \pi = \pi \circ f$. Then we have

$$\delta_f = \max\{\delta_g, \delta_{f_T}\}$$

Moreover, let P_T and P_A be the monic minimal polynomials of f_T and g as elements of $\operatorname{End}(T)_{\mathbb{Q}}$ and $\operatorname{End}(A)_{\mathbb{Q}}$ respectively. Then, $\delta_{f_T} = \rho(P_T)$ and $\delta_g = \rho(P_A)^2$. (2) Let $f: X \longrightarrow X$ be a surjective homomorphism and $a \in X$ a

point. Then $\delta_{T_q \circ f} = \delta_f$.

Remark 5. The description of δ_{f_T} and δ_g in Theorem 4(1) might be well-known.

References

- [1] Bombieri, E., Gubler, W., Heights in Diophantine geometry, Cambridge university press, 2007.
- Hindry, M., Silverman, J. H., Diophantine geometry. An introduction, Gradu-[2]ate Text in Mathematics, no. 20, Springer-Verlag, New York, 2000.
- [3] Kawaguchi, S., Silverman, J. H., Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), 5009-5035.
- [4] Kawaguchi, S., Silverman, J. H., On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math. 713 (2016), 21 - 48.
- [5] Lin, J-L., On the arithmetic dynamics of monomial maps, arXiv:1704.02661.
- [6] Silverman, J. H., Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems **34** (2014), no. 2, 647–678.
- [7] Silverman, J. H., Arithmetic and dynamical degrees on abelian varieties, preprint, 2015, http://arxiv.org/abs/1501.04205

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TOKYO, Komaba, Tokyo, 153-8914, Japan

E-mail address: myohsuke@ms.u-tokyo.ac.jp