
Constant mean curvature surfaces in hyperbolic 3-space with

curvature lines on horospheres∗

Department of Mathematics, Faculty of Science, Kobe University
Joseph Cho

1 Introduction

The study of constant mean curvature (CMC) H surfaces in hyperbolic 3-space depend greatly
on the value of H. For a CMC H ≥ 1 surface in H3, Lawson showed in [8] that there is a
corresponding CMC surface or minimal surface in the Euclidean 3-space or the 3-sphere S3, called
the Lawson correspondence. Consequently, there have been many studies on CMC H ≥ 1 surfaces.
For example, Bryant constructed a Weierstrass type representation for CMC 1 surfaces using the
aforementioned correspondence in [2], while Umehara and Yamada expanded upon this result in
[12]. However, there have been relatively few papers regarding CMC 0 ≤ H < 1 surfaces in H3,
where the existence and regularity of such surfaces has been investigated in papers such as [1], [7],
[9], [10], or [11].

Meanwhile, Dorfmeister, Pedit, and Wu gave a generalized form of Weiertrass-type representa-
tions for CMC surfaces in R3 in [5] by using loop group methods to construct integrable surfaces,
frequently called the DPW method. The DPW method gave rise to numerous applications in con-
structing CMC surfaces in various space forms, including CMC surfaces in H3. In fact, the DPW
method allowed for a unified approach to constructing CMC surfaces in H3, as shown in results
such as [4] and [6].

On the other hand, Wente investigated CMC surfaces with spherical curvature lines, or CMC
surfaces of Enneper type in [14]. After examining CMC 1/2 surfaces and minimal surfaces in
Euclidean 3-space R3 with this property, he proceeded to study minimal surfaces of Enneper type
in hyperbolic 3-space H3. In fact, he considered minimal surfaces with one family of curvature lines
lying on any type of sphere, including compact spheres, horospheres, and open pseudospheres. By
obtaining a partial differential equation from the spherical curvature line condition, he was able
to show that the family of such surfaces depends on four parameters, up to shifts of parameters in
the domain.

The result of this presentation is primarily motivated by the work of Wente in [14]; however,
instead of considering minimal surfaces in H3 with curvature lines lying on any type of sphere,
we consider CMC H ≥ 0 surfaces, but limit the type of sphere, on which one family of curvature
lines lies, to horospheres. By looking at the horosphericity condition of one family of curvature
lines, we obtain and solve a system of partial differential equations for the metric function to
show that any CMC surface with H ≥ 0 in H3 with one family of curvature lines on horospheres
must be a rotation surface of H3, as defined in [3]. However, it turns out that the converse is not
true; namely, there are CMC rotation surfaces whose curvature lines do not lie on horospheres.
Therefore, we identify the exact condition on the metric function where one family of curvature
lines lie on horospheres. Finally, we investigate the geometric properties of CMC rotation surfaces
with one family of curvature lines lying on horospheres.

∗This presentation is based on the jointwork with Mitsugu Abe and Yuta Ogata.



2 Preliminaries

We use the Minkowski model of hyperbolic 3-space H3. Let R3,1 be the Minkowski space equipped
with metric

〈(x1, x2, x3, x0), (y1, y2, y3, y0)〉 := x1y1 + x2y2 + x3y3 − x0y0,
and consider the hyperbolic 3-space as

H3 = {x = (x1, x2, x3, x0) ∈ R3,1 : 〈x, x〉 = −1, x0 > 0}.

Following [14], we define a sphere S[m, q] in H3 as

S[m, q] := {x ∈ H3 : 〈x,m〉 = q}

for a constant vector m ∈ R3,1 and a constant q ∈ R, assuming the set is non-empty. Furthermore,
a sphere S[m, q] is

• a compact sphere if 〈m,m〉 < 0 and q < −1,

• a horosphere if 〈m,m〉 = 0 and q < −1, or

• an open pseudosphere if 〈m,m〉 > 0 for any arbitrary q.

Note that a plane in H3 may be treated as an open pseudosphere with q = 0.
Let Σ ⊂ R2 be a simply-connected domain with coordinates (u, v), and let X : Σ → H3 be a

conformally immersed surface. Since X(u, v) is conformal,

ds2 = ρ−2(du2 + dv2)

for some ρ : Σ→ R.
We choose the unit normal vector field ξ : Σ→ S2,1 of X, where S2,1 = {x ∈ R3,1 : 〈x, x〉 = 1}.

Since we are interested in constant mean curvature (CMC) surfaces, we let the mean curvature
H ≥ 0 be any constant. Totally umbilic surfaces, either a plane or a sphere, trivially have curvature
lines on horospheres; therefore, we assume that X(u, v) is not totally umbilic, and that (u, v)
are conformal curvature line (isothermic) coordinates on Σ. Then we can normalize the Hopf
differential factor such that Q = − 1

2 , and calculate the integrability condition, or the Gauss
equation, as

ρ ·∆ρ− ρ2u − ρ2v + ρ4 + 1−H2 = 0.

We first reformulate the results for minimal surfaces in [14] to be applicable to CMC H ≥ 0
surfaces.

Lemma 1 (cf. Theorem 5.2 of [14]). Let X(u, v) be an umbilic-free CMC surface with isothermic
coordinates. If the v-curvature lines lie on spheres S[m1(u), q1(u)], then there are real functions
α(u) and β(u) such that

2ρu(u, v) = α(u) + β(u)ρ2. (2.1)

In fact, for N1 := m1 + 〈m1, X〉X and 〈N1, ξ〉 =: |N1||X| cos θ1,

α(u) = − 2q1
|N1| sin θ1

− 2H cot θ1 and β(u) = −2 cot θ1.

Next, we describe how we can determine the type of sphere S[m1(u), q1(u)] from (2.1).

Lemma 2 (cf. Theorem 5.3 of [14]). Let X(u, v) be as in Lemma 1, further satisfying (2.1). Then,
S[m1(u), q1(u)] is

• a compact sphere if and only if (α−Hβ)2 − β2 > 4,

• a horosphere if and only if (α−Hβ)2 − β2 = 4, or

• an open pseudosphere if and only if (α−Hβ)2 − β2 < 4.



Therefore, finding CMC surfaces with v-curvature lines lying on horospheres is equivalent to
solving for ρ(u, v) satisfying the following system of partial differential equations{

ρ ·∆ρ− ρ2u − ρ2v + ρ4 + 1−H2 = 0 (CMC condition), (2.2a)

2ρu = α+ βρ2 (spherical v-curvature line condition), (2.2b)

for some functions α(u) and β(u) satisfying

(α−Hβ)2 − β2 = 4 (horosphericity condition for v-curvature lines). (2.3)

3 CMC surfaces with curvature lines on horospheres

Now, to find CMC surfaces with one family of curvature lines on horospheres, we describe how we
can solve (2.2) satisfying (2.3). To do this, we first refer to the following useful fact from [14].

Fact 1 (cf. Theorem 2.3 of [14]). Let ρ(u, v) be a solution to the system (2.2). If ρv 6≡ 0, then the
functions α(u) and β(u) are solutions to the system{

αuu = aα− 2α2β − 2(H2 − 1)β,

βuu = aβ − 2αβ2 − 2α,
(3.1)

where a (resp. b) is some constant. Furthermore,

4ρ2v = −(4 + β2)ρ4 + 4βuρ
3 + (6αβ − 4a)ρ2 − 4αuρ− (4(H2 − 1) + α2) (3.2)

From this point, assume that X(u, v) is an umbilic-free surface.

3.1 CMC surface with v-curvature lines on horospheres

Now assume that the v-curvature lines lie on horospheres. Using Fact 1, we know that

X(u, v) is a CMC surface with v-curvature lines on horospheres

⇐⇒ ρ 6≡ 0 satisfies (2.2a), (2.2b), and (2.3) for some appropriate α and β

⇐⇒ ρ 6≡ 0, α, β satisfies (2.2b), (2.3), (3.1), and (3.2).

Therefore, finding CMC surfaces with v-curvature lines on horospheres is equivalent to executing
the following steps:

1. Find α and β satisfying (2.3) and (3.1).

2. Find ρ satisfying (2.2b) and (3.2) using α and β from the previous step.

Now, to better use the condition (2.3), define

y(u) := α(u) + (1−H)β(u) and z(u) := α(u)− (1 +H)β(u), (3.3)

which allow us to rewrite (2.3) as
y(u) · z(u) = 4. (3.4)

Using these relations, we may simplify (3.1), as shown in the following lemma.

Lemma 3. Let y(u) and z(u) be as in (3.3) and (3.4). Then, finding α(u) and β(u) satisfying
(3.1) with (2.3) is equivalent to finding y(u) satisfying

(yu(u))2 = −1

4
(H + 1)y(u)4 + (a+ 4H)y(u)2 + 4(1−H). (3.5)

Using (3.5), we may prove the following proposition.

Proposition 1. Let X(u, v) be a CMC surface with isothermic coordinates. If one family of
curvature lines lies on horospheres, then X(u, v) must be a rotation surface.



3.2 CMC rotation surfaces with curvature lines on horospheres

By Proposition 1, we understand that if one family of curvature lines of a CMC surface lies on
horospheres, then the surface must be a rotation surface. However, the converse may not be
true; namely, there may be CMC rotation surfaces which curvature lines do not lie on horospheres.
Therefore, we now find the exact condition for a CMC rotation surface to satisfy the horosphericity
condition.

Let X(u, v) be a CMC rotation surface with isothermic coordinates. Then, either ρu ≡ 0 or
ρv ≡ 0; first, assume that ρv ≡ 0. Then, (2.2a) becomes

ρ2u = −ρ4 − c1ρ2 −H2 + 1, (3.6)

for some real constant of integration c1.
Considering the right side of (3.6) as a polynomial P2 of ρ, we understand that

c1 ∈ R if 0 ≤ H < 1,

c1 < −2
√
H2 − 1 if H = 1,

c1 ≤ −2
√
H2 − 1 if H > 1.

(3.7)

Considering the case ρu ≡ 0 in a similar fashion, we find the exact condition such that one
family of curvature lines lie on horospheres as follows.

Theorem 1. X(u, v) is a CMC surface with one family of curvature lines on horospheres if and
only if it is a CMC rotation surface where the metric function ρ satisfies either

• ρv ≡ 0 and ρ2u = −ρ4 − c1ρ2 −H2 + 1 for


c1 ≤ 2H if 0 ≤ H < 1,

c1 < −2
√
H2 − 1 if H = 1,

c1 ≤ −2
√
H2 − 1 if H > 1,

or

• ρu ≡ 0 and ρ2v = −ρ4 − c2ρ2 −H2 + 1 for c2 ≤ −2H

for some constants c1 and c2 (see also the following Figure 1).
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(b) H = 1
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H2 − 1 c1

(c) H > 1

−2H c2

(d) 0 ≤ H < 1

−2H −2
√
H2 − 1 c2

(e) H = 1

−2H −2
√
H2 − 1 c2

(f) H > 1

Figure 1: Relationship between c1 and c2 and the resulting surface. Values in the red region define
CMC rotation surfaces, while values in the orange region define CMC rotation surfaces with one
family of curvature lines on horospheres.

4 Geometric meaning of the bifurcation

Theorem 1 tells us that while some rotation surfaces have one family of curvature lines on horo-
spheres, some CMC rotation surfaces do not have this condition. In this section, we consider the
geometric meaning of the bifurcation. First, for any rotation surfaces we show the existence of two
fixed 2-dimensional spans in R3,1 (i.e. fixed hyperplanes), as in [3] and [13].

Proposition 2 ([3], [13]). Let X(u, v) be a CMC rotation surface in H3 with ρv ≡ 0. Then, for
A1(v) := ρ(u)Xv(u, v)

P 1 = span
{
A1(v), A1

v(v)
}

(4.1)



becomes a fixed hyperplane in R3,1for all (u, v). Moreover, the orthogonal complement (P 1)⊥ also
becomes a fixed hyperplane such that

(P 1)⊥ = span
{
B1(u), B1

u(u)
}

(4.2)

for B1(u) := ρu
1−H−ρ2X + ρXu + ρu

1−H−ρ2 ξ. We call (P 1)⊥ the generating hyperplane of a CMC

rotation surface X(u, v) in H3.

Note that if ρv ≡ 0, then v is in fact the parameter describing the rotation of the surface
X(u, v). However, B1(u) and (B1)u(u) are vectors independent of v. Since the rotations in
R3,1 leave two directions fixed, we can deduce that (P 1)⊥ = span

{
B1(u), B1

u(u)
}

is indeed the
generating hyperplane for the rotation surface X(u, v) as defined in [3].

Now, following [3], we define the types of CMC rotation surfaces and the (rotation) axis.

Definition (cf. p.688 of [3]). Following the notation from Proposition 2, a CMC rotation surface
X(u, v) is

• spherical if (P 1)⊥ has (+ −) signature,

• hyperbolic if (P 1)⊥ has (+ +) signature, or

• parabolic if (P 1)⊥ has (+ 0) signature.

Moreover, for a spherical CMC rotation surface, we call ~v1 := (P 1)⊥ ∩H3 the (rotation) axis of
X(u, v).

By calculating the signature of the basis of the generating hyperplane, we understand the
geometric meaning of the bifurcation in Theorem 1 and Figure 1 as explained in the following
Figure 2.
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Figure 2: Relationship between the horosphericity condition and types of CMC rotation surface.
In addition to the information in Figure 1, values in the green, blue, and dashed cyan regions define
CMC spherical, parabolic, and hyperbolic rotation surfaces, respectively.

Therefore, in summary, we obtain the following main theorem.

Theorem 2. If X(u, v) is a constant mean curvature surface in H3 with one family of curvature
lines lying on horospheres, then it must be a piece of one, and only one, of the following:

• a totally umbilic surface,

• a CMC parabolic rotation surface, or

• a CMC spherical rotation surface.



(a) Spherical rotation surface (b) Parabolic rotation surface (c) Hyperbolic rotation surface

Figure 3: CMC 1/2 rotation surfaces in H3 visualized using the Poincaré ball model. The first two
surfaces have one family of curvature lines on horospheres, while the last surface does not.
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