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Abstract

We show a uniform birationality for multiadjoint maps. That is, for any integer n and κ with 1 ≤ κ ≤ n, there
exists a positive integer mn,κ such that for any n-dimensional polarized manifold (X,L) with κ(KX + L) = κ, the
linear system |m(KX + L)| gives the Iitaka fibration associated to KX + L for every m ≥ mn,κ.

1 Introduction

Let X be a smooth projective variety defined over C and L an ample line bundle over X. Then the pair (X,L)
is called a polarized manifold.

In the classification theory of polarized manifolds, it is important to study a condition on the integer m for
which |KX +mL| is free. Fujita’s freeness conjecture ([9]) predicts that |KX +mL| is free for every m ≥ dimX+1.
It is known that this conjecture is true in the case of dimX ≤ 4 (cf. [27], [8], [17]). In higher dimensional case, H.
Tsuji ([31]) proved that |KX +mL| is free for any m ≥ dimX(dimX + 1)/2 + 1 (see also [2]).

On the other hand when KX + L is nef, by virtue of the nonvanishing theorem due to V. Shokurov ([28]),
H0(X,OX(m(KX + L))) ̸= 0 holds for m ≫ 0. In particular, κ(X,KX + L) ≥ 0 holds. Then it is important to
find an integer m with H0(X,OX(m(KX + L))) ̸= 0. Concerning this, F. Ambro ([1]) and Y. Kawamata ([19])
proposed the following conjecture:

Conjecture 1.1. Let X be a normal projective variety and B an effective Q-divisor on X such that (X,B) is a
KLT pair (cf. Definition 2.6). Let D be a nef Cartier divisor on X such that D − (KX +B) is nef and big. Then
H0(X,OX(D)) ̸= 0 holds.

We note that if X is smooth, B = 0 and D := KX +L is nef, then this conjecture implies that H0(X,OX(KX +
L)) ̸= 0 holds for every polarized manifold (X,L) with KX + L nef. In [19], Kawamata solved the conjecture
above when X is 2-dimensional and when X is a minimal 3-fold. In [16], A. Höring solved it in the case where
X is a normal projective 3-fold with at most Q-factorial canonical singularities, B = 0, and D −KX is a nef and
big Cartier divisor. These results are immediate consequences of the Hirzebruch-Riemann-Roch theorem and some
classical results on surfaces and 3-folds. In constrast in higher dimensional case, it is rather difficult to calculate
the dimension of H0(X,OX(D)). Indeed, Conjecture 1.1 is still widely open for the case of dimX ≥ 4.

In [10, Problem 3.2], Y. Fukuma proposed the following problem:

Problem 1.2. For a fixed positive integer n, find the smallest positive integer mn depending only on n such that
H0(X,OX(m(KX + L))) ̸= 0 holds for every polarized manifold (X,L) of dimension n with κ(KX + L) ≥ 0.

It is known that m1 = 1 and m2 = 1 (cf. [10, Theorem 2.8]). Also, it was proved that m3 = 1 (See [16, 1.5
Theorem] and [12]). In [12], the case of dimX = 4 was treated. Concerning higher dimensional case, in [3] the
author showed that H0(X,OX(m(KX + L))) ̸= 0 for every m ≥ n(n + 1)/2 + 2 for any n-dimensional polarized
manifold (X,L) with KX + L nef.

In this report, we consider the case where KX + L is not necessarily nef; we prove the following theorem.

Theorem 1.3. Fix integers n and κ with 1 ≤ κ ≤ n. Then there exists a positive integer mn,κ such that, if (X,L)
is an n-dimensional polarized manifold with κ(X,KX + L) = κ, then Φ|m(KX+L)| is birationally equivalent to Φ∞
for every integer m ≥ mn,κ, where Φ∞ denotes the Iitaka fibration associated to KX + L (cf. Section 2.2). In
particular, for any n-dimensional polarized manifold (X,L) with κ(X,KX + L) = κ,

H0(X,OX(m(KX + L))) ̸= 0

holds for every m ≥ mn,κ.

We show the theorem above in Section 4. In the proof, we reduce the problem to uniform birationality for
multiples of big adjoint bundles KY +B over the base space Y of Φ∞. Thus we need to show the following:



Theorem 1.4. Fix a positive integer n. Then there exists a positive integer mn such that, for a smooth projective
variety Y of dimension n and for a big Cartier divisor B on Y with KY + B big, the linear system |m(KY + B)|
gives a birational map for every m ≥ mn.

We prove the theorem above in Section 3 by induction on n. Also we use the techniques developed by Hacon-
McKernan ([13]), Takayama ([29]) and Tsuji ([33]) in their study of pluricanonical systems of projective varieties
of general type. We notice that the method does not lead to an effective constant mn.

As a consequence of Theorem 1.4, we have the following:

Corollary 1.5. Fix a positive integer n. Then there exists a positive constant C(n) such that, for a smooth
projective variety Y of dimension n and for a big Cartier divisors B on Y with KY +B big,

µ(Y,KY +B) ≥ C(n)

holds, where µ(Y,KY +B) denotes the volume of Y with respect to KY +B (cf. Definition 2.18).

We use the corollary in the induction procedure in the proof of Theorem 1.4. In fact, assuming that there exists
such a lower bound C(k) in the case of k < n, we can deduce that Theorem 1.4 is true in dimension n (see Lemma
3.2 and Section 3.3).

2 Preliminaries

In this section, we review some algebraic and analytic notions.

2.1 Nef and big line bundles

In this subsection, we shall recall some properties of nef and big line bundles.

Definition 2.1. Let X be a normal variety and D a Cartier divisor on X. Then

1. D is said to be nef, if D · C ≥ 0 holds for every irreducible curve C on X.

2. D is said to be big, if κ(X,D) = dimX holds,

where κ(X,D) denotes the Iitaka-Kodaira dimension of D defined by

κ(X,D) = lim sup
m→∞

log h0(X,OX(mD))

logm
.

By the Riemann-Roch theorem, we have the following:

Proposition 2.2 ([6, Corollary 4.3]). Let X be a smooth projective variety of dimension n and D a nef and big
divisor on X. Then

h0(X,OX(mD)) =
Dn

n!
mn +O(mn−1)

holds.

2.2 Iitaka fibration

Let L be a line bundle on a projective variety X. We define the set N(L) of L by

N(L) := {m ≥ 0 | H0(X,OX(mL)) ̸= 0}.

If κ(X,L) ≥ 1, then dimΦ|mL|(X) = κ(X,L) holds for every sufficiently large integer m ∈ N(L). Here we denote by
Φ|mL| the rational map associated with the linear system |mL|. The following theorem by S. Iitaka is fundamental:

Theorem 2.3 ([23, 2.1.C]). Let X be a normal projective variety and L a line bundle on X with κ(X,L) > 0.
Then for all sufficiently large k ∈ N(L), the rational maps Φ|kL| : X 99K Yk are birationally equivalent to a fixed
algebraic fiber space

Φ∞ : X∞ −→ Y∞

of normal spaces such that the restriction of L to a very general fiber of Φ∞ has Iitaka dimension zero, and that
dimY∞ = κ(X,L) holds. (We call Φ∞ the Iitaka fibration associated to L.)



2.3 Singularities of divisors

In this subsection, we shall introduce the notion of singularities of pairs.

Definition 2.4. Let X be a normal variety and U := Xreg the nonsingular locus of X. Since codim(X \ U) ≥ 2
holds, every divisor on X is uniquely determined by its restriction to U (cf. [15, Chapter II]). Then we can define
the canonical sheaf ωX = OX(KX) of X by

ωX := i∗OU (KU ),

where i : U ↪→ X denotes the inclusion.

Definition 2.5. Let (X,D) be a pair of a normal variety X and an effective Q-divisor D on X. A proper birational
morphism µ : Y −→ X is said to be a log resolution of (X,D), if Y is smooth and Exc(µ) ∪ µ−1

∗ D has a simple
normal crossing support, where Exc(µ) denotes the exceptional locus of µ, and µ−1

∗ D denotes the strict transform
of D.

Definition 2.6. Let (X,D) be a pair of a normal variety and an effective Q-divisor on X. Suppose that KX +D
is Q-Cartier. Let µ : Y → X be a log resolution of (X,D). Then we have the formula:

KY = µ∗(KX +D) +
∑
i

aiEi,

where Ei is a prime divisor and ai ∈ Q. Then the pair (X,D) is said to have only Kawamata log terminal
singularities (KLT, for short) (resp. log canonical singularities (LC, for short)), if ai > −1 (resp. ai ≥ −1)
holds for every i. We call ai the discrepancy coefficient for Ei. The pair (X,D) is said to be KLT (resp. LC)
at a point x ∈ X, if (U,D|U ) is KLT (resp. LC) for some neighborhood U of x.

Definition 2.7. Let (X,D) be a pair of a normal variety and an effective Q-divisor on X. A subvariety W of X
is said to be a center of log canonical singularities (or LC-center) for (X,D), if there exists a log resolution
µ : Y −→ X of (X,D) and a prime divisor E on Y with discrepancy coefficient e ≤ −1 and µ(E) = W . We
denote by CLC(X,D) the set of all centers of log canonical singularities for (X,D). For a point x ∈ X, we set
CLC(X,x,D) := {W ∈ CLC(X,D) | x belongs to W}.
Proposition 2.8 ([17, Proposition 1.5]). Let (X,D) be a pair of a normal variety and an effective Q-Cartier
divisor such that KX +D is Q-Cartier. Assume that X is KLT and (X,D) is LC. If W1 and W2 are the elements
of CLC(X,D) and W is an irreducible component of W1 ∩W2, then W ∈ CLC(X,D). This implies that if (X,D)
is LC but not KLT at a point x ∈ X, there exists the unique minimal element of CLC(X,x,D). (We call the
minimal element of CLC(X,x,D) the minimal center of log canonical singularities of (X,D) at x.)

2.4 Singular hermitian metrics and multiplier ideal sheaves

Our basic tool is singular hermitian metrics as in [6]. Here we shall recall the notions of singular hermitian
metrics and multiplier ideal sheaves.

Definition 2.9. Let L be a holomorphic line bundle over a complex manifold X. A singular hermitian metric
h on L is given by

h = h0 · e−φ,

where h0 is a C∞-hermitian metric on L and φ ∈ L1
loc(X). We call φ the weight function of h with respect to h0,

and we say that the hermitian line bundle (L, h) is the singular hermitian line bundle over X. The curvature
current Θh of h is defined by

Θh := Θh0 +
√
−1∂∂φ,

where Θh0 =
√
−1∂∂ log h0 is the curvature form of h0 and ∂∂φ is taken in the sense of currents.

Example 2.10. Let L be a holomorphic line bundle over a complex manifold X. Suppose that there exists a
positive integer m such that Γ(X,OX(mL)) ̸= 0. Let σ ∈ Γ(X,OX(mL)) be a nontrivial section. Then

h :=
1

|σ|2/m
=

h0

h⊗m
0 (σ, σ)1/m

is a singular hermitian metric on L, where h0 is an arbitrary C∞-hermitian metric on L (the right hand side is
independent of h0). By Poincaré-Lelong’s formula, we have Θh = 2π/m(σ), where (σ) denotes the current of
integration over the divisor of σ. In particular, Θh is a positive current.



Definition 2.11. Let (L, h) be a singular hermitian line bundle over a complex manifold X. The L2-sheaf L2(L, h)
of (L, h) is defined by

L2(L, h)(U) := {σ ∈ Γ(U,OX(L)) | h(σ, σ) ∈ L1
loc(U)},

where U runs over the open subsets of X.
Now we shall write h as h = h0 · e−φ, where h0 is a C∞-hermitian metric on L and φ ∈ L1

loc(X) is the weight
function of h with respect to h0. Then we define the multiplier ideal sheaf I(h) of (L, h) by

I(h) := L2(OX , e−φ).

Note that L2(L, h) = OX(L)⊗ I(h) holds.
The notion of multiplier ideal sheaves is very useful in investigating singularities of pairs as in the previous

section. Using the above notation, we shall define multiplier ideal sheaves of divisors as follows.

Definition 2.12. Let D =
∑

i aiDi be an effective Q-divisor on X. Let σi be a global section of OX(Di) with
divisor Di and let hi be a C∞-hermitian metric on OX(Di). Then we define the multiplier ideal sheaf I(D)
associated with D by

I(D) := L2

(
OX ,

1∏
i hi(σi, σi)ai

)
.

The following proposition reveals a relation between multiplier ideal sheaves and singularities of pairs.

Proposition 2.13 ([22, Proposition 3.20]). Let X be smooth projective variety of dimension n and D an effective
Q-divisor on X. Then (X,D) is KLT at a point x of X if and only if I(D)x = OX,x holds. In particular, if the
multiplicity of D at x is greater than or equal to n, then I(D)x ̸= OX,x.

The following vanishing theorem due to A. Nadel ([25]) is crucial.

Theorem 2.14. Let (L, h) be a singular hermitian line bundle over a compact Kähler manifold X and ω a Kähler
form on X. Suppose that the curvature current Θh of h is strictly positive, i.e., there exists a constant ε > 0 such
that Θh − εω is a positive (1, 1)-current. Then I(h) is a coherent sheaf on X, and

Hq(X,OX(KX + L)⊗ I(h)) = 0

holds for every q ≥ 1.

2.5 Analytic Zariski Decompositions

In this subsection, we recall the notion of pseudoeffective line bundles, and introduce the notion of analytic
Zariski decompositions, which is used in the proof of Theorem 1.4 (Section 3). Using analytic Zariski decompositions,
we can handle pseudoeffective line bundles like nef line bundles.

Definition 2.15. A line bundle L over a smooth projective variety X is said to be pseudoeffective, if there exists
an ample line bundles A over X such that

H0(X,OX(mL+A)) ̸= 0

holds for every integer m ≥ 1.

Remark 2.15.1. By [6, Proposition 4.2], we see that L is pseudoeffective if and only if L has a singular hermitian
metric h with Θh ≥ 0. Then we call (L, h) a pseudoeffective singular hermitian line bundle.

The following notion of analytic Zariski decompositions was introduced by Tsuji ([30]).

Definition 2.16. Let L be a holomorphic line bundle over a compact complex manifold X. A singular hermitian
metric h on L is said to be an analytic Zariski decomposition (AZD, for short), if the following properties
hold:

1. Θh is a positive current;

2. for any positive integer m, the natural inclusion:

H0(X,OX(mL)⊗ I(hm)) −→ H0(X,OX(mL))

is an isomorphism.

By definition, it follows that a line bundle equipped with an AZD is pseudoeffective. Conversely, we claim that
every pseudoeffective line bundle has an AZD as follows:

Theorem 2.17 ([7, Theorem 1.5]). Let X be a smooth projective variety and L a pseudoeffective line bundle over
X. Then L has an AZD.



2.6 Volumes of pseudoeffective line bundles

In order to measure the positivity of pseudoeffective line bundles, we introduce the notion of volume of a smooth
projective variety with respect to a singular hermitian metrics. First we shall recall the notion of volumes with
respect to line bundles:

Definition 2.18. Let M be a n-dimensional complex manifold and L a holomorphic line bundle over M . We
define the volume of M with respect to L by

µ(M,L) = n! · lim sup
m→∞

m−nh0(M,OM (mL)).

We shall define the volumes with respect to pseudoeffective singular hermitian line bundles:

Definition 2.19. Let X be a smooth projective variety X of dimension n and (L, h) a pseudoeffective singular
hermitian line bundle over X. We define the volume of X with respect to (L, h) by

µ(X, (L, h)) = n! · lim sup
m→∞

m−nh0(X,OX(mL)⊗ I(hm)).

Let Y be a subvariety of X and πY : Ỹ −→ Y its desingularization. Then we define µ(Y, (L, h)|Y ) as

µ(Y, (L, h)|Y ) := µ(Ỹ , π∗
Y (L, h)|Y ),

where π∗
Y (L, h) := (π∗

Y L, π∗
Y h). The right hand side is independent of the choice of the desingularization πY of Y

(see [33, Remark 2.23]).

2.7 A subadjunction theorem

In this subsection, we review a subadjunction theorem, which is used in the proof of Lemma 3.7 later. Lemma
3.7 is a key step for the proof of Theorem 1.4.

Let M be a smooth projective variety and (L, hL) a pseudoeffective singular hermitian line bundle over M . Sup-
pose that hL is lower-semicontinuous. (Then the local potential of the curvature current ΘhL is plurisubharmonic,
and so the restriction of hL to any subvariety of M is well-defined.) Let m0 be a positive integer. Suppose that

Γ(M,OM (m0L)⊗ I∞(hm0
L )) ̸= 0

holds. Then we take a non-trivial section σ ∈ Γ(M,OM (m0L) ⊗ I∞(hm0
L )). Let α be a rational number with

0 < α ≤ 1. Let S be an irreducible subvariety of M such that (M,α(σ)) is LC but not KLT on the generic point
of S, and (M, (α− ε)(σ)) is KLT on the generic point of S for any rational number 0 < ε ≪ 1. Then we define the
function ΨS : M −→ [−∞, 0) by

ΨS := α log hm0
L (σ, σ).

For simplicity, we suppose that S is smooth. (When S is not smooth, we need to take an embedded resolution in
order to apply Theorem 2.20 below.) We also assume that S is not contained in the singular locus of h.

Let dV be a C∞-volume form on M . Then we can define the residue volume form dV [ΨS ] on S as follows: Let
f : N −→ M be a log resolution of (M,α∆). Then we can define the residue volume form f∗dVN [f∗ΨS ] on the
divisorial component of f−1(S).

Then we have the following extension theorem, which is a generalization of Theorem 2.24 in [33].

Theorem 2.20. Let M , S, ΨS, φ, L, hL be as above. Let (B, hB) be a pseudoeffective singular hermitian line
bundle such that the singular locus of hB does not contain S. Let d be an integer with d > αm0. Suppose that there
exists an AZD hS of

(KM + dL+B|S , e−φ · (dV −1 · hd
L · hB)|S).

Then any element of

A2(S,OS(m(KM + dL+B)), (dV −1 · hd
L · hB)|S · hm−1

S , dV [ΨS ])

extends to an element of H0(M,OM (m(KM + dL+B))) for every integer m ≥ 1.

The proof is parallel to that of Theorem 2.24 in [33], so we omit it.

3 Proof of Theorem 1.4

The organization of this section is as follows: In Section 3.1, we show Corollary 1.5. As mentioned in Section 1, we
use this in the proof of Theorem 1.4. In Section 3.2, we prove a weaker version of Theorem 1.4 (see Lemma 3.2) by
using Angehrn-Siu’s method. Finally in Section 3.3, by using these lemmas, we show Theorem 1.4.



3.1 Proof of Corollary 1.5

In this subsection, we show Corollary 1.5. First we recall the following result:

Lemma 3.1 (cf. [26, Corollary 6.1]). Let X be a smooth projective n-fold and L a big line bundle over X. Let m
be a positve integer. Suppose that Φ|mL| : X 99K PN is a birational map onto its image. Then

degPN Φ|mL| ≤ mn · µ(X,L)

holds, where N := h0(X,mL)− 1.

Proof of Corollary 1.5. Let Y be a smooth projective n-folds and B a big Cartier divisors on Y with KY +B big.
Let mn be the positive constant as in Theorem 1.4. Then since Φ|mn(KY +B)| gives a birational map onto its image,
by Lemma 3.1, we obtain

1 ≤ degPN Φ|mn(KY +B)| ≤ mn
n · µ(Y,KY +B).

Therefore putting C(n) := m−n
n , we have completed the proof of Corollary 1.5.

3.2 Point separation for big pluriadjoint systems

We prove the following weaker version of Theorem 1.4:

Lemma 3.2. Let n be a positive integer. Suppose that there exists a positive constant v such that, if V is a smooth
projective variety with dimV < n and D is a big Cartier divisor on V with KV +D big, then µ(KV +D) ≥ v holds.
Then there exists positive constants an and bn such that, for any smooth projective n-fold Y and for any big Cartier
divisors B such that KY +B is big, the map Φ|m(KY +B)| is a birational map for every m ≥ an ·µ(KY +B)−1/n+bn.

Before going on the proof of the lemma above, we shall construct a filtration of Y as follows: Let Y and B be as
above. Let h be an AZD of KY +B as in Theorem 2.17. Then we may assume that h is lower semicontinuous, and
so the restriction of h to any subvariety of Y is well-defined. We denote by Y ◦ the set of points y on Y such that
|m(KY + B)| is base-point-free at y and Φ|m(KY +B)| is an isomorphism on a neighborhood of y for some m ≥ 1.
Then it suffices to show the following:

Lemma 3.3. Let x and y be distinct points on Y ◦. Then there exist a filtration of Y :

Y ) Y1 ) · · · ) Yr ) Yr+1 = {x} or {y},

by a strictly decreasing sequence of subvarieties {Yi}r+1
i=0 for some r, and invariants:

α0, α1, · · · , αr > 0,

µ0, µ1, · · · , µr (µi := µ(Yi, (KY +B, h)|Yi))

with the estimates:

αi ≤
ni

ni
√
2

ni
√
µi

+ δ, (3.1)

where δ is a fixed positive number with δ ≪ 1/n and ni := dimYi. We also obtain global sections:

σi ∈ H0(Y,OY ((mi + li)(KY +B)))

for some positive integers m0, . . . ,mr and l1, . . . , lr, where l0 := 0. Letting

Di :=
1

mi + li
(σi),

αi is defined inductively by

αi := inf

{
α > 0 |

(
Y,

i−1∑
j=0

(αj − εj)Dj + αDi

)
is KLT at neither x nor y

}
,

where ε0, . . . , εi−1 > 0 are small rational numbers. Here each Yi (i = 2, . . . , r) is the minimal center of log canonical
singularities of the pair (

Y,

i−2∑
j=0

(αj − εj)Dj + αi−1Di−1

)
at x or y.

If we have already constructed the filtration above, we obtain the following:



Lemma 3.4. Φ|m(KY +B)| separates x and y for every integer m >
∑r

i=0 αi + 1.

Proof. For each integer i with 0 ≤ i ≤ r, we define the singular hermitian metric hi on KY + B by hi :=
|σi|−2/(mi+li). Since B is big, there exists an Q-effective divisor E on Y such that B−E is ample. We may assume
that both x and y are not contained in the support of E. Now we fix a C∞-hermitian metric h′

B on B − E with
strictly positive curvature. Let E =

∑
k ekEk be the irreducible decomposition of E and σk ∈ Γ(X,Ek) a global

section of Ek with (σk) = Ek. Then we define the singular hermitian metric hB on B by

hB := h′
B · 1∏

k |σk|2ek
.

We fix an integer m with m >
∑r

i=0 αi +1. Let hx,y be the singular hermitian metric on (m− 1)(KY +B) +B
defined by

hx,y :=

(
r−1∏
i=0

hαi−εi
i

)
· hαr

r · hm−1−
∑r−1

i=0 (αi−εi)−αr · hB ,

where h is an AZD of KY + B as above. Then it follows that the curvature current of hx,y is strictly positive.
Furthermore, by the construction of the filtration (Lemma 3.3), we see that the support of OY /I(hx,y) contains
both x and y and it is isolated at least at one of x or y. Then by virtue of Theorem 2.14, we obtain the surjection:

H0(Y,OY (m(KY +B))) −→ H0(Y,OY (m(KY +B))⊗OY /I(hx,y)).

Hence we can take a section σ ∈ H0(Y,OY (m(KY + B))) with σ(x) ̸= 0 and σ(y) = 0, thereby completing the
proof of Lemma 3.4.

3.2.1 Proof of Lemma 3.3

Proof of Lemma 3.3. We set µ0 := µ(Y, (KY +B, h)) (cf. Definition 2.19). Since KY +B is big and h is an AZD,
we get µ0 > 0. Then by the Riemann-Roch theorem and the dimension-counting argument, we have the following:

Lemma 3.5. Fix a positive number ε < 1. Then

H0(Y,OY (m(KY +B))⊗ I(hm)⊗m
⌈ n√µ0(1−ε)m/ n√2⌉
x,y ) ̸= 0

holds for every m ≫ 1, where mx,y := mx ·my.

We take a number 0 < ε < 1 and an integer m0 ≫ 0 as in Lemma 3.5, and take a non-trivial section:

σ0 ∈ H0(Y,OY (m0(KY +B))⊗ I(hm0)⊗m
⌈ n√µ0(1−ε)m0/

n√2⌉
x,y ).

Then we define the Q-divisor D0 on Y by

D0 :=
1

m0
(σ0),

and the singular hermitian metric h0 on KY +B by

h0 :=
1

|σ0|2/m0
.

Let α0 be the positive number defined by

α0 := inf{α > 0 | (Y, αD0) is KLT at neither x nor y.}.

(In other words, α0 is the infimum of positive numbers α such that both x and y belong to the support of OY /I(hα
0 ).)

Then by Proposition 2.13, we have the following estimate:

Lemma 3.6.

α0 ≤ n n
√
2

n
√
µ0

+ δ,

where δ is a positive number with δ ≪ 1/n.

Let Y1 be the minimal center of log canonical singularities of (Y, α0D0) at x or y. If Y1 = {x}, then we stop
constructing the filtration. If not, we repeat the same process. Finally we obtain the desired filtration of Y . This
completes the proof of Lemma 3.3.



3.2.2 Proof of Lemma 3.2

In order to complete the proof of Lemma 3.2, we need to show the following estimate:

Lemma 3.7. Let Y ) Y1 ) · · · ) Yr ) Yr+1 = {x} or {y} be the filtration as constructed in Lemma 3.3. Let j be
an integer with 1 ≤ j ≤ r. Let ϖ : Wj −→ Yj be a resolution of singularities. Then

µ(Wj ,KWj +BWj ) ≤

(⌈
1 +

j−1∑
i=0

αi

⌉)nj

· µj

holds, where BWj := ϖ∗B|Yj .

The proof is as follows: Let Di, αi, εi be as in Lemma 3.3. Fix an integer j with 1 ≤ j ≤ r. Then we set

D :=

j−2∑
i=0

(αi − εi)Di + αj−1Dj−1.

Let π : Z −→ Y be a log resolution of (Y,D) which factors through ϖ. By taking a suitable modification, we may
assume that there exists a unique irreducible component Fj of the exceptional divisor of π with discrepancy −1
such that Fj dominates Yj by π. Let πj : Fj −→ Wj be the morphism induced by the construction of Fj . We set
βj :=

∑j−2
i=0 (αi − εi) + αj−1 and γj := 1 + ⌈βj⌉. Then we obtain the following :

Lemma 3.8.

µ(Wj ,KWj +BWj ) ≤ nj ! lim sup
m→∞

m−nj dim Image{H0(Y,OY (mγj(KY +B)))

−→ H0(Yj ,OYj (mγj(KY +B)))}

holds.

This lemma follows from the subadjunction theorem (Theorem 2.20), but the proof is technical. So we omit it.

Proof of Lemma 3.7. Recall that h is an AZD of KY +B as in Theorem 2.17. Then, we have

H0(Y,OY (mγj(KY +B))⊗ I∞(hmγj )) ∼= H0(Y,OY (mγj(KY +B)))

for every m ≥ 0. Thus for every section σ ∈ H0(Y,OY (mγj(KY +B))), we see that

σ|Yj ∈ H0(Yj ,OYj (mγj(KY +B)))

holds. Therefore by virtue of Lemma 3.8, we obtain

µ(Wj ,KWj +BWj ) ≤nj ! · lim sup
m→∞

m−nj · h0(Yj ,OYj (mγj(KY +B))⊗ I(hmγj ))

≤γ
nj

j · µ(Yj , (KY +B, h)|Yj ).

Since βj ≤
∑j−1

i=0 αi, we get the desired inequality. This completes the proof of Lemma 3.7.

In order to prove Lemma 3.2, we use the following lemma:

Lemma 3.9 ([26, Lemma 6.4]). Let Y be a smooth projective variety and M an effective Q-divisor such that KY +M
is big. Let V be a subvariety passing through a very general point on Y and φ : V ′ −→ V a desingularization. Then
the Q-divisor KV ′ + φ∗M |V is big.

Proof of Lemma 3.2. Let x and y be distinct points on Y ◦. Let

Y ) Y1 ) · · · ) Yr ) Yr+1 = {x} or {y}

be the filtration as in Lemma 3.3. Since x and y are belong to Y ◦, by virtue of Lemma 3.9, we see that KWj +BWj

is big for every j. Then by assumption and Lemma 3.7, we see that

v ≤ µ(Wj ,KWj +BWj ) ≤

(⌈
2 +

j−1∑
i=0

αi

⌉)nj

· µj

holds for every 1 ≤ j ≤ r. Then by (3.1), we have

1
nj
√
µj

≤

(⌈
2 +

j−1∑
i=0

αi

⌉)
· 1

nj
√
v
≤

(
3 +

j−1∑
i=0

ni
√
2ni

ni
√
µi

)
· 1

nj
√
v
.



Then we have (
1 +

r∑
i=0

αi <

)
3 +

r∑
i=0

ni
√
2ni

ni
√
µi

≤

(
3 +

r−1∑
i=0

ni
√
2ni

ni
√
µi

)(
1 +

nr
nr
√
2

nr
√
v

)
.

By repeating the same process and using Lemma 3.4, we finally obtain positive constants an and bn depending only
on n such that Φ|m(KY +L)| separates x and y for every m with

m ≥ an

n
√
µ0

+ bn.

This completes the proof of Lemma 3.2.

3.3 Completion of the proof of Theorem 1.4

Proof of Theorem 1.4. The proof follows the argument in [26, 6.2] (see also [29, p. 584]). We use induction on the
dimension of the varieties. We fix a positive integer n. Suppose that Theorem 1.4 and so Theorem 1.5 hold for
n− 1. Let an and bn be positive constants as in Lemma 3.2. Let Y be a smooth projective variety of dimension n
and B a big Cartier divisors on Y with KY + B big. If µ(KY + B) ≥ 1 holds, then Φ|m(KY +B)| is birational for
every m ≥ an + bn. On the other hand, by the Hibert-scheme type argument, we obtain a positive constant C(n)
such that, for every a smooth projective n-fold Y and for every big Cartier divisor B on Y with KY + B big and
µ(Y,KY +B) < 1, the inequality µ(Y,KY +B) ≥ C(n) holds. This completes Theorem 1.4 .

4 Proof of Theorem 1.3

We shall prove Theorem 1.3. Let us fix positive integers n and κ. Fix a polarized manifold (X,L) of dimension
n with κ(X,KX + L) = κ. Let f := Φ∞ : X −→ Y be the Iitaka fibration associated with KX + L. Taking a
suitable modification, we may also suppose that Y is smooth. (Notice that L is not ample but big because of the
modification above in this case.) Since κ(F,KF + L|F ) = 0 holds for a general fiber F of f , by [4, Lemma 3.3.2],
we see that KF + L|F is linearly equivalent to OF . Hence the reflexive sheaf:

B := f∗OX(KX/Y + L)∗∗

is an invertible sheaf on Y . Note that L has a singular hermitian metric hL with strictly positive curvature current
since L is big. Then we define the singular hermitian metric hB on B by

hB(σ, σ) :=

∫
X/Y

hL · σ ∧ σ,

where σ is a local section of B. By [32, Theorem 1.5] (see also [5, Theorem 0.1]), we see that hB has strictly positive
curvature current and so B is big. Further by definition, we have

H0(X,OX(m(KX + L))) ∼= H0(Y,OY (m(KY +B))) (4.1)

for every m ≥ 1, and hence KY + B is big. Therefore, applying Theorem 1.4, we deduce that Φ|m(KY +B)| is
a birational map onto its image for every m ≥ mκ, where mκ is the positive integer as in Theorem 1.4. As a
result, letting mn,κ := mκ, we conclude that Φ|m(KX+L)| is birationally equivalent to f for every m ≥ mn,κ. This
completes the proof of Theorem 1.3.
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