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1 Introduction

Let Ω be a bounded domain of RN (N ≥ 1). In this article, we shall study Kato’s inequality
when ∆pu is a measure. By ∆pu we denote a a p-Laplace operator:

∆pu = div (|∇u|p−2∇u), (1.1)

where 1 < p < ∞ and ∇u = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xN ).

The classical Kato’s inequality for a Laplacian asserts that given any function u ∈ L1
loc(Ω)

such that ∆u ∈ L1
loc(Ω), then ∆u+ is a Radon measure and the following holds:

∆u+ ≥ χ[u≥0]∆u in D′(Ω), (1.2)

where u+ = max[u, 0]. A similar inequality holds when ∆u is replaced by ∆pu under additional
assumptions on distributional derivatives of u ∈ L1

loc(Ω) (see e.g. [7, 8, 10] ).
Our main result ( see Theorem 2.1 and Corollary 2.1 below) further extends Kato’s inequality

involving ∆p to the case where ∆pu ∈ M(Ω), where M(Ω) denotes the space of Radon measures
on Ω. In other words, µ ∈ M(Ω) if and only if , for every ω ⊂⊂ Ω, there exists Cω > 0 such
that |

∫
Ω

ϕ dµ| ≤ Cω||ϕ||L∞ , for any ϕ ∈ C∞
c (ω).

We begin with recalling that for any µ ∈ M(Ω) can be uniquely decomposed as a sum of
two Radon measures on Ω (see e.g. [4, 6]) : µ = µd + µc, where

µd(A) = 0 for any Borel measurable set A ⊂ Ω such that Cp(A, Ω) = 0,

|µc|(Ω \ F ) = 0 for some Borel measurable set F ⊂ Ω such that Cp(F, Ω) = 0.

(1.3)

Here by Cp(K, Ω) we denote a p-capacity of a Borel set K relative to Ω (for the precise definition
see Definition 2.3 in §2). We note that (µd)+ = (µ+)d and (µc)+ = (µ+)c hold by the definition.

Then we recall an admissible class of functions for the strong maximum principle in [10]:

Definition 1.1. (Admissible class in W 1,p∗

loc (Ω)) Let 1 < p < ∞ and p∗ = max(1, p − 1). A
function u ∈ W 1,p∗

loc (Ω) is said to be admissible if and only if ∆pu ∈ M(Ω) and there exists a
sequence {un}∞n=1 ⊂ W 1,p

loc (Ω) ∩ L∞(Ω) such that:

1. un → u a.e. in Ω, un → u in W 1,p∗

loc (Ω) as n → ∞.

2. ∆pun ∈ L1
loc(Ω) (n = 1, 2, · · · ) and

sup
n

|∆pun|(ω) < ∞ for every ω ⊂⊂ Ω. (1.4)
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Proposition 1.1. 1. Assume that a function u ∈ W 1,p∗

loc (Ω) is admissible. Then u+ =
max[u, 0] and u− = max[−u, 0] are also admissible.

2. Assume that p = 2. Then a function u ∈ W 1,1
loc (Ω) is admissible if ∆u ∈ M(Ω).

3. A function u ∈ W 1,p
0 (Ω) is admissible if ∆pu ∈ M(Ω).

2 Main results

Theorem 2.1. Let N ≥ 1, 1 < p < ∞ and Ω be a bounded domain of RN . Let Φ be a C1

convex function such that 0 ≤ Φ′ < ∞ on R. Let u ∈ L1
loc(Ω) if p = 2 and let u ∈ W 1,p∗

loc (Ω) if
p 6= 2. Assume that ∆pu ∈ M(Ω). Moreover if p 6= 2, assume that u is admissible in the sense
of Definition 1.1. Then we have

∆pΦ(u) ≥ Φ′(u)p−1(∆pu)d − ||Φ′||L∞(R)(∆pu)−c in D′(Ω). (2.1)

From this theorem it follows that we have:

Corollary 2.1. Assume the same assumptions in Theorem 2.1. Then it holds that

∆p(u+) ≥ χ[u≥0](∆pu)d − (∆pu)−c in D′(Ω), (2.2)
∆p|u| ≥ sgn(u)(∆pu)d − |∆pu|c in D′(Ω), (2.3)

where sgn(t) = 1 for t > 0, sgn(t) = −1 for t < 0, and sgn(0) = 0.

Theorem 2.2. ( Inverse maximum principle ) Let N ≥ 1, 1 < p < ∞ and let Ω be a
bounded domain of RN . Let u ∈ L1

loc(Ω) if p = 2 and let u ∈ W 1,p∗

loc (Ω) if p 6= 2. Assume that
u ≥ 0 a.e. in Ω and ∆pu ∈ M(Ω). Moreover if p 6= 2, assume that u is admissible in the sense
of Definition 1.1. Then we have

(−∆pu)c ≥ 0 in Ω. (2.4)

Example 1. Let u = |x|α for α = (p − N)/(p − 1).

1. u satisfies
∆pu = α|α|p−2cNδ,

where δ denotes a Dirac mass and cN denotes the surface area of the N -dimensional
unit ball B1. It is easy to see that |∇u| ∈ L1

loc(Ω) if and only if p > 2 − 1/N . When
1 < p ≤ 2 − 1/N holds, we can consider u as a renormalized solution. We recall that if
p ≤ 2 − 1/N , then we cannot expect the solution of an equation of the form ∆pu = f (a
Radon measure) to be in W 1,1

loc (Ω). For the detail, see e.g. [1, 2, 5, 11, 12].

2. If 2 − 1/N ≤ p ≤ N , then (−∆p(u+))c = (−∆pu)+c = −α|α|p−2cNδ ≥ 0. If p > N , then
(−∆p(u+))c = (−∆pu)+c = 0 and ∆p(u+) ≥ χ[u≥0](∆pu)d = α|α|p−2cNδ ≥ 0.

3. When p > 2− 1/N , u is admissible in W 1,p∗
(B1). In fact, u = |x|α is approximated by a

sequence of admissible functions vα(n) = |x|α(n) ∈ L1(B1) where α(n) = α + 1/(n(p − 1))
(n = 1, 2, · · · ). Then, in the sense of measures we have

∆pvα(n) =
1
n
|α(n)|p−2α(n)|x|1/n−N → ∆pu as n → ∞.

Therefore there exits a sequence {nα(n)} such that {nα(n)} → ∞ as n → ∞ and a sequence
of mollification {(vα(n))

nα(n)
ρ } satisfies the conditions in Definition 1.1
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3 Lemmas

Let us describe lemmas which are useful for the proof of the main results. Given k > 0, we
denote by Tk:R → R a truncation function

Tk(s) :=


k if s ≥ k,
s if −k < s < k,
−k if s ≤ −k.

(3.1)

Since Tk|R+ is concave, we have the following lemma in the spirit of the standard L1-version of
Kato’s inequality (see [9]).

Lemma 1. Assume that v ∈ W 1,p
loc (Ω), ∆pv ∈ L1

loc(Ω) and v ≥ 0 a.e. in Ω. Then, for any
k ≥ 0 we have

∆p(Tk(v)) ≤ tk(v)∆pv in D′(Ω), (3.2)
where the function tk : R+ → R is given by

tk(s) :=

{
1 if 0 ≤ s ≤ k,

0 if s > k.

Lemma 2. Let N ≥ 1, 1 < p < ∞, p 6= 2 and Ω be a bounded domain of RN . Let Φ be a C1

convex function such that 0 ≤ Φ′ < ∞ on R. Let u ∈ W 1,p∗

loc (Ω). Assume that u is admissible
in the sense of Definition 1.1. Then we have the followings:

1. Tk(u) ∈ W 1,p
loc (Ω) for every k > 0. Moreover, given ω ⊂⊂ ω′ ⊂⊂ Ω, there exist positive

constant C such that∫
ω

|∇Tk(u)|p ≤ Ck

(∫
ω′

|∆pu| +
∫

ω′
|∇u|p−1

)
, (3.3)

where positive constant C are independent on each u.

2. If u ≥ 0 a.e. in Ω, then ∆p(Tk(u)) is a Radon measure for every k > 0 and we have

∆p(Tk(u)) ≤ (∆pu)+ in Ω. (3.4)

The next lemma is seen in [3]; Theorem 2.1.

Lemma 3. Let 1 < p < ∞. Let ν ∈ M(Ω). Then ν ∈ L1(Ω) + W−1,p′
(Ω) if and only if ν is a

diffuse measure. Here p′ = p/(p − 1) and W−1,p′
(Ω) is the dual space of W 1,p

0 (Ω).

When p = 2, the next lemma is seen in [4]; Lemma 2.1.

Lemma 4. Assume that ν ∈ M(Ω) is a diffuse measure with respect to p-capacity ( i.e. νc = 0).
Let {vn} be a sequence in L∞(Ω) ∩ W 1,p

0 (Ω) such that ||vn||∞ ≤ C and vn → v weakly in
W 1,p

0 (Ω). Then
vn → v in L1

loc(Ω; dν).
Equivalently, there exists a subsequence {vnk

} converging to v |ν|-a.e. in Ω. Here L1
loc(Ω; dν) =

{f :
∫

ω
|f | dν < ∞, ∀ω ⊂⊂ Ω}

Without loss of generality in the proof of Theorem 2.1, we may assume that Φ ∈ C2(R),
0 ≤ Φ′ ≤ 1 and Φ′′ has compact support in R. Since Φ is convex and Φ′ is uniformly bounded,
we see that both limit limt→±∞ Φ′(t) exist. Then we prepare the following lemma.

Lemma 5. Assume u ∈ W 1,p∗

loc (Ω) is admissible. Let ϕ ∈ C∞
0 (Ω). Let Φ be a C2 convex

function such that suppΦ′′ has compact support and

sup
t∈R

(Φ′(t))p−2Φ′′(t) < ∞. (3.5)

Then Φ′(un)p−1ϕ → Φ′(u)p−1ϕ weakly in W 1,p
0 (Ω) as n → ∞.
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