Remarks on Kato’s inequality when A,u is a measure
Toshio Horiuchi, Xiaojing Liu

December 25, 2015

1 Introduction

Let © be a bounded domain of RN (N > 1). In this article, we shall study Kato’s inequality
when Aju is a measure. By A,u we denote a a p-Laplace operator:

Apu = div (|VulP~2Vu), (1.1)
where 1 < p < oo and Vu = (Ou/dz1,0u/0xs, ..., 0u/dzN).

The classical Kato’s inequality for a Laplacian asserts that given any function u € L%OC(Q)
such that Au € L{ (), then Au™ is a Radon measure and the following holds:

loc
Aut > YpusoAu in D'(Q2), (1.2)

where u™ = max[u, 0]. A similar inequality holds when Aw is replaced by A,u under additional
assumptions on distributional derivatives of u € L, () (see e.g. [7, 8, 10] ).

Our main result ( see Theorem 2.1 and Corollary 2.1 below) further extends Kato’s inequality
involving A, to the case where Apu € M(2), where M (£2) denotes the space of Radon measures
on . In other words, p € M(Q) if and only if , for every w CC €2, there exists C,, > 0 such
that | [, pdu| < Collpl|r=, for any ¢ € C(w).

We begin with recalling that for any u € M () can be uniquely decomposed as a sum of
two Radon measures on € (see e.g. [4, 6]) : = pq + e, where

ta(A) =0 for any Borel measurable set A C € such that Cp(4,Q) =0,
(1.3)
e (2\ F) =0 for some Borel measurable set F' C Q such that C,(F,Q) = 0.

Here by C, (K, Q) we denote a p-capacity of a Borel set K relative to Q (for the precise definition
see Definition 2.3 in §2). We note that (ug)™ = (u*)q and ()™ = (u). hold by the definition.

Then we recall an admissible class of functions for the strong maximum principle in [10]:

Definition 1.1. (Admissible class in VV&)C’) (Q)) Let 1 < p < oo and p* =max(l,p—1). A
function u € VVlif (Q) is said to be admissible if and only if Apu € M(Q) and there ezists a
sequence {u, }22, C W.bP(Q) N L>(Q) such that:

loc

. . 1.p*
1 up —uae i Q, u, —uin WP (Q) as n — oo.

2. Apuy, € LL () (n=1,2,--+) and

loc

sup |Apuy|(w) < oo for every w CC . (1.4)



Proposition 1.1. 1. Assume that a function u € WI})’C”* () is admissible. Then ut =
max[u, 0] and v~ = max[—u, 0] are also admissible.

2. Assume that p = 2. Then a function u € W, (Q) is admissible if Au € M(Q).

loc

3. A function u € WyP(Q) is admissible if Ayu € M(S).

2 Main results

Theorem 2.1. Let N > 1,1 < p < 0o and Q be a bounded domain of RN . Let ® be a C!
convez function such that 0 < ® < oo on R. Letu € L (Q) if p=2 and let u € W, Lp” () of

loc

p # 2. Assume that Apu € M(Q). Moreover if p # 2, assume that u is admissible in the sense
of Definition 1.1. Then we have

Ap®(u) = @ ()P~ (Apu)a — 1] 1=y (Dpu)s  in D'(Q). (2.1)
From this theorem it follows that we have:
Corollary 2.1. Assume the same assumptions in Theorem 2.1. Then it holds that
Ap(u") = Xz (Apu)a — (Apu),  in D'(Q), (2.2)
Aplul > sgn(u)(Apu)g — |Apul. in D'(Q),
where sgn(t) =1 fort >0, sgn(t) = —1 for t <0, and sgn(0) = 0.

Theorem 2.2. ( Inverse maximum principle ) Let N > 1, 1 < p < oo and let Q be a

bounded domain of RYN. Letu € Ll _(Q) if p=2 and let u € I/Vlicp*(Q) if p#£ 2. Assume that
u>0 ae inQand Apu € M(Q). Moreover if p # 2, assume that u is admissible in the sense
of Definition 1.1. Then we have

(—Apu)e >0 in Q. (2.4)
Example 1. Let u = |z|* fora=(p—N)/(p—1).
1. u satisfies
Ayu = alalP~2end,

where § denotes a Dirac mass and cyn denotes the surface area of the N-dimensional
unit ball By. It is easy to see that |Vu| € L, .(Q) if and only if p > 2 — 1/N. When
1 <p<2—1/N holds, we can consider u as a renormalized solution. We recall that if
p < 2—1/N, then we cannot expect the solution of an equation of the form A,u = f (a
Radon measure) to be in Wlf)’cl(ﬂ) For the detail, see e.g. [1, 2, 5, 11, 12].

2. If2—1/N <p <N, then (—A,(u")). = (—Apu)f = —alafP~2cyd > 0. If p > N, then
(~8,())e = (CAu)F =0 and A, (ut) > Xfuz0)(Bpu)a = afalP"2cnd > 0.

3. When p>2—1/N, u is admissible in WP  (By). In fact, u = |z|* is approzimated by a
(

sequence Of admissible functions vy, = |z|*™) € LY(By) where a(n) = a+1/(n(p — 1))
(n=1,2,--+). Then, in the sense of measures we have

1
Apla(n) = g|a(n)|p_2a(n)‘x|1/n_lv — Apu as n — 0.

Therefore there exits a sequence {nqy(n)} such that {n.(,)} — oo asn — oo and a sequence
of mollification {(va(n)):}“(")} satisfies the conditions in Definition 1.1



3 Lemmas

Let us describe lemmas which are useful for the proof of the main results. Given k > 0, we
denote by Tr:R — R a truncation function

k ifs>k,
Ti(s) =4 s if —k<s<k, (3.1)
—k if s<-—k.

Since Ty |r, is concave, we have the following lemma in the spirit of the standard L'-version of
Kato’s inequality (see [9]).

Lemma 1. Assume that v € WLP(Q), Ayv € L (Q) and v > 0 a.e. in Q. Then, for any
k > 0 we have
Ap(T(v)) < tr(v)Apv  in D'(), (3.2)

where the function ty, : Ry — R s given by

1 if0<s<k,
tk(s) = .
0 if s>k

Lemma 2. Let N > 1,1 <p < oo, p#2 and Q be a bounded domain of RN . Let ® be a C*
convez function such that 0 < ® < oo on R. Let u € WLP (Q). Assume that u is admissible
in the sense of Definition 1.1. Then we have the followings:

1. Ti(u) € WEP(Q) for every k > 0. Moreover, given w CC W' CC Q, there exist positive

loc
constant C such that

/w|VTk(u)\p < Ck (/w A ul + /w |Vu|p_1) , (3.3)

where positive constant C are independent on each u.
2. Ifu>0 ae. inQ, then Ay(Tx(u)) is a Radon measure for every k > 0 and we have
Ap(Ty(u)) < (Apu)™ in €. (3.4)

The next lemma is seen in [3]; Theorem 2.1.

Lemma 3. Let 1 < p < oo. Let v e M(Q). Then v € LY(Q) + W12 (Q) if and only if v is a
diffuse measure. Here p' = p/(p—1) and W1 (Q) is the dual space of Wol’p(ﬂ).

When p = 2, the next lemma is seen in [4]; Lemma 2.1.

Lemma 4. Assume that v € M(Q) is a diffuse measure with respect to p-capacity (i.e. v. =0).
Let {v,} be a sequence in L®(Q) N Wy P(Q) such that ||vn|lee < C and v, — v weakly in
WyP(). Then

v — v in L, (Q;dv).
Equivalently, there exists a subsequence {v,, } converging to v |v|-a.e. in Q. Here L],
{f [, |fldv < o0,Vw CC Q}

Without loss of generality in the proof of Theorem 2.1, we may assume that ® € C?(R),
0 < @ <1 and ®” has compact support in R. Since @ is convex and ®’ is uniformly bounded,
we see that both limit lim;_,4 . ®’(¢) exist. Then we prepare the following lemma.

Lemma 5. Assume u € W,'7 () is admissible. Let ¢ € C3°(). Let ® be a C? convex

loc
function such that supp ®” has compact support and

(Q;dv) =

sup(®' (£))P~20" (t) < oco. (3.5)
teR

Then @ (u, )P~ Lo — @ (u)P~ o weakly in Wy P (Q) as n — oo.
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