STRICTLY CONVEX WULFF SHAPES
AND C^1 CONVEX INTEGRANDS

HUHE HAN

Abstract. Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function and let W_γ be the Wulff shape associated with γ. We show that Wulff shape W_γ is strictly convex if and only if convex integrand of W_γ is of class C^1. We also show that if the boundary of W_γ is a C^1 submanifold, then γ must be the convex integrand of W_γ.

1. Introduction

Let n be a positive integer. Given a continuous function $\gamma : S^n \to \mathbb{R}_+$ where $S^n \subset \mathbb{R}^{n+1}$ is the unit sphere and \mathbb{R}_+ is the set consisting of positive real numbers, the Wulff shape associated with γ, denoted by W_γ, is the following intersection

$$W_\gamma = \bigcap_{\theta \in S^n} \Gamma_{\gamma, \theta}.$$

Here, $\Gamma_{\gamma, \theta}$ is the following half-space:

$$\Gamma_{\gamma, \theta} = \{ x \in \mathbb{R}^{n+1} \mid x \cdot \theta \leq \gamma(\theta) \}.$$

By definition, the Wulff shape W_γ is a convex body such that the origin of \mathbb{R}^{n+1} is an interior point of W_γ. The notion of Wulff shape was first introduced by G. Wulff in [9]. Let $Id : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \times \{1\}$ be the map defined by $Id(x) = (x, 1)$. Denote the point $(0, \ldots, 0, 1) \in \mathbb{R}^{n+2}$ by N. The set $S^{n+1} - H(-N)$ is denoted by

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{wulff_shape.png}
\caption{A Wulff shape W_γ.}
\end{figure}

\textit{2010 Mathematics Subject Classification.} 52A20, 52A55, 82D25.

\textit{Key words and phrases.} Wulff shape, dual Wulff shape, strictly convex, convex integrand, support function.
Let $\alpha_N : S_{N,+}^{n+1} \to \mathbb{R}^{n+1} \times \{1\}$ be the central projection relative to N, namely, α_N is defined as follows for any $P = (P_1, \ldots, P_{n+1}, P_{n+2}) \in S_{N,+}^{n+1}$ (see Figure 2):

$$\alpha_N (P_1, \ldots, P_{n+1}, P_{n+2}) = \left(\frac{P_1}{P_{n+2}}, \ldots, \frac{P_{n+1}}{P_{n+2}}, 1 \right).$$

Next, we consider the mapping $\Psi_N : S_{N,+}^{n+1} - \{\pm N\} \to S_{N,+}^{n+1}$ (see Figure 3), defined by

$$\Psi_N(P) = \frac{1}{\sqrt{1 - (N \cdot P)^2}} (N - (N \cdot P)P).$$

The mapping Ψ_N was introduced in [5], has the following intriguing properties:

1. For any $P \in S_{N,+}^{n+1} - \{\pm N\}$, the equality $P \cdot \Psi_N(P) = 0$ holds,
2. for any $P \in S_{N,+}^{n+1} - \{\pm N\}$, the property $\Psi_N(P) \in \mathbb{R}N + \mathbb{R}P$ holds,
3. for any $P \in S_{N,+}^{n+1} - \{\pm N\}$, the property $N \cdot \Psi_N(P) > 0$ holds,
4. the restriction $\Psi_N |_{S_{N,+}^{n+1} - \{N\}} : S_{N,+}^{n+1} - \{N\} \to S_{N,+}^{n+1} - \{N\}$ is a C^∞ diffeomorphism.

For any point $P \in S_{N,+}^{n+1}$, let $H(P)$ be the closed hemisphere centered at P, namely,

$$H(P) = \{Q \in S_{N,+}^{n+1} | P \cdot Q \geq 0\},$$
where the dot in the center stands for the scalar product of two vectors $P, Q \in \mathbb{R}^{n+2}$.

For any non-empty subset $\tilde{W} \subset S^{n+1}$, the spherical polar set of \tilde{W}, denoted by \tilde{W}°, is defined as follows:

$$\tilde{W}^\circ = \bigcap_{P \in \tilde{W}} H(P).$$

for details on spherical polar set, see for instance [1, 6]

\textbf{Proposition 1 ([6]).} Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function. Let $\text{graph}(\gamma) = \{(\theta, \gamma(\theta)) \in \mathbb{R}^{n+1} - \{0\} \mid \theta \in S^n\}$, where $(\theta, \gamma(\theta))$ is the polar plot expression for a point of $\mathbb{R}^{n+1} - \{0\}$. Then, \mathcal{W}_γ is characterized as follows:

$$\mathcal{W}_\gamma = \text{Id}^{-1} \circ \alpha_N \left(\left(\Psi_N \circ \alpha_N^{-1} \circ \text{Id} \left(\text{graph}(\gamma)\right)\right)\right).$$

\textbf{Proposition 2 ([6]).} For any Wulff shape \mathcal{W}_γ, the following set, too, is a Wulff shape:

$$\text{Id}^{-1} \circ \alpha_N \left(\left(\alpha_N^{-1} \circ \text{Id} \left(\mathcal{W}_\gamma\right)\right)\right).$$

\textbf{Definition 1 ([6]).} Let \mathcal{W}_γ be a Wulff shape. The Wulff shape given in Proposition 2 is called the dual Wulff shape of \mathcal{W}_γ.

A Wulff shape \mathcal{W}_γ said to be self-dual Wulff shape if the equality $W_\gamma = \text{Id}^{-1} \circ \alpha_N \left(\left(\alpha_N^{-1} \circ \text{Id} \left(\mathcal{W}_\gamma\right)\right)\right)$ holds, for details on self-dual Wulff shapes, see for instance [4].

The mapping $\text{inv} : \mathbb{R}^{n+1} - \{0\} \to \mathbb{R}^{n+1} - \{0\}$, defined as follows, is called the \text{inversion} with respect to the origin of \mathbb{R}^{n+1}.

$$\text{inv}(\theta, r) = \left(-\theta, \frac{1}{r}\right).$$

Let Γ_γ be the boundary of the convex hull of $\text{inv}(\text{graph}(\gamma))$. If the equality $\Gamma_\gamma = \text{inv}(\text{graph}(\gamma))$ is satisfied, then γ is called a \text{convex integrand}. The notion of convex integrand was firstly introduced by J. Taylor in [8].

2. \textbf{Main Results}

\textbf{Theorem 1 ([2])}. Let $W \subset \mathbb{R}^{n+1}$ be a convex body containing the origin of \mathbb{R}^{n+1} as an interior point of W. Then, W is strictly convex if and only if its convex integrand γ_W is of class C^1.

\textbf{Theorem 2 ([3])}. Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function and let \mathcal{W}_γ be the Wulff shape associated with γ. Suppose that the boundary of \mathcal{W}_γ is a C^1 submanifold. Then, γ must be the convex integrand of \mathcal{W}_γ.

3. \textbf{Applications of Theorem 1}

Since the boundary of the convex hull of a C^1 closed submanifold is a C^1 closed submanifold (for instance, see [7, 10]), as a corollary of Theorem 1, we have the following:

\textbf{Corollary 1 ([2])}. Let $\gamma : S^n \to \mathbb{R}_+$ be a function of class C^1. Then, \mathcal{W}_γ is strictly convex.

In particular, we have the following:
Corollary 2 ([6], Theorem 1.3). Let \(\gamma : S^n \to \mathbb{R}_+ \) be a function of class \(C^1 \). Then, \(W_\gamma \) is never a polytope.

On the other hand, the converse of Corollary 1 does not hold in general (see Figure 4).

\[\text{graph(\text{convex integrand of } W_\gamma)} \]

\[\text{graph(\gamma)} \]

Figure 4. A strictly convex Wulff shape \(W_\gamma \) having non smooth support function \(\gamma \).

Combining Theorem 1 and Proposition 1 yields the following:

Corollary 3 ([2]). A Wulff shape in \(\mathbb{R}^{n+1} \) is strictly convex if and only if the boundary of its dual Wulff shape is \(C^1 \) diffeomorphic to \(S^n \).

In particular, we have the following:

Corollary 4 ([2]). A Wulff shape in \(\mathbb{R}^{n+1} \) is strictly convex and its boundary is \(C^1 \) diffeomorphic to \(S^n \) if and only if its dual Wulff shape is strictly convex and the boundary of it is \(C^1 \) diffeomorphic to \(S^n \).

It is interesting to compare Corollary 4 and the following proposition:

Proposition 3 ([6]). A Wulff shape in \(\mathbb{R}^{n+1} \) is a polytope if and only if its dual Wulff shape is a polytope.

Finally, we give an application of Theorem 1 from the view point of pedal.

Definition 2 ([2]). Let \(p \) (resp., \(F : S^n \to \mathbb{R}^{n+1} \)) be a point of \(\mathbb{R}^{n+1} \) (resp., a \(C^1 \) embedding). Then, the pedal of \(F(S^n) \) relative to \(p \) is the mapping \(G : S^n \to \mathbb{R}^{n+1} \) which maps \(\theta \in S^n \) to the nearest point in the tangent hyperplane to \(F(S^n) \) at \(F(\theta) \) from the given point \(p \).

Let \(W \) be a Wulff shape in \(\mathbb{R}^{n+1} \). Suppose that \(\partial W \) is \(C^1 \) diffeomorphic to \(S^n \). Then, \(\partial W \) may be regarded as the graph of a certain \(C^1 \) embedding \(F : S^n \to \mathbb{R}^{n+1} \), and \(\gamma_\omega \) is exactly the pedal of \(\partial W \) relative to the origin. Theorem 1 gives a sufficient condition for the pedal of \(\partial W \) relative to the origin to be smooth:

Corollary 5 ([2]). Suppose that a Wulff shape \(W \) in \(\mathbb{R}^{n+1} \) is strictly convex and its boundary is \(C^1 \) diffeomorphic to \(S^n \). Then, the pedal of \(\partial W \) relative to the any interior point of \(W \) is of class \(C^1 \).
References

Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan
E-mail address: han-huhe-bx@ynu.jp