STRICTLY CONVEX WULFF SHAPES AND C^1 CONVEX INTEGRANDS

HUHE HAN

ABSTRACT. Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function and let \mathcal{W}_{γ} be the Wulff shape associated with γ . We show that Wulff shape \mathcal{W}_{γ} is strictly convex if and only if convex integrand of \mathcal{W}_{γ} is of class C^1 . We also show that if the boundary of \mathcal{W}_{γ} is a C^1 submanifold, then γ must be the convex integrand of \mathcal{W}_{γ} .

1. INTRODUCTION

Let *n* be a positive integer. Given a continuous function $\gamma : S^n \to \mathbb{R}_+$ where $S^n \subset \mathbb{R}^{n+1}$ is the unit sphere and \mathbb{R}_+ is the set consisting of positive real numbers, the *Wulff shape associated with* γ , denoted by \mathcal{W}_{γ} , is the following intersection

$$\mathcal{W}_{\gamma} = \bigcap_{\theta \in S^n} \Gamma_{\gamma,\theta}.$$

Here, $\Gamma_{\gamma,\theta}$ is the following half-space:

$$\Gamma_{\gamma,\theta} = \{ x \in \mathbb{R}^{n+1} \mid x \cdot \theta \le \gamma(\theta) \}.$$

FIGURE 1. A Wulff shape \mathcal{W}_{γ} .

By definition, the Wulff shape \mathcal{W}_{γ} is a convex body such that the origin of \mathbb{R}^{n+1} is an interior point of \mathcal{W}_{γ} . The notion of Wulff shape was first introduced by G. Wulff in [9]. Let $Id : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1} \times \{1\}$ be the map defined by Id(x) = (x, 1). Denote the point $(0, \ldots, 0, 1) \in \mathbb{R}^{n+2}$ by N. The set $S^{n+1} - H(-N)$ is denoted by

²⁰¹⁰ Mathematics Subject Classification. 52A20, 52A55, 82D25.

Key words and phrases. Wulff shape, dual Wulff shape, strictly convex, convex integrand, support function.

 $S_{N,+}^{n+1}$. Let $\alpha_N : S_{N,+}^{n+1} \to \mathbb{R}^{n+1} \times \{1\}$ be the central projection relative to N, namely, α_N is defined as follows for any $P = (P_1, \ldots, P_{n+1}, P_{n+2}) \in S_{N,+}^{n+1}$ (see Figure 2):

$$\alpha_N(P_1,\ldots,P_{n+1},P_{n+2}) = \left(\frac{P_1}{P_{n+2}},\ldots,\frac{P_{n+1}}{P_{n+2}},1\right).$$

FIGURE 2. The central projection α_N .

Next, we consider the mapping Ψ_N : $S^{n+1} - \{\pm N\} \to S^{n+1}_{N,+}$ (see Figure 3), defined by

$$\Psi_N(P) = \frac{1}{\sqrt{1 - (N \cdot P)^2}} (N - (N \cdot P)P).$$

The mapping Ψ_N was introduced in [5], has the following intriguing properties:

FIGURE 3. $P \cdot \Psi_N(P) = 0.$

- (1) For any $P \in S^{n+1} \{\pm N\}$, the equality $P \cdot \Psi_N(P) = 0$ holds,

- (1) For any $P \in S^{n+1} \{\pm N\}$, the property $\Psi_N(P) \in \mathbb{R}N + \mathbb{R}P$ holds, (2) for any $P \in S^{n+1} \{\pm N\}$, the property $\Psi_N(P) \in \mathbb{R}N + \mathbb{R}P$ holds, (3) for any $P \in S^{n+1} \{\pm N\}$, the property $N \cdot \Psi_N(P) > 0$ holds, (4) the restriction $\Psi_N|_{S^{n+1}_{N,+}-\{N\}} : S^{n+1}_{N,+} \{N\} \to S^{n+1}_{N,+} \{N\}$ is a C^{∞} diffeomorphism.

For any point $P \in S^{n+1}$, let H(P) be the closed hemisphere centered at P, namely,

$$H(P) = \{ Q \in S^{n+1} | P \cdot Q \ge 0 \},\$$

where the dot in the center stands for the scalar product of two vectors $P, Q \in \mathbb{R}^{n+2}$. For any non-empty subset $\widetilde{W} \subset S^{n+1}$, the *spherical polar set of* \widetilde{W} , denoted by \widetilde{W}° , is defined as follows:

$$\widetilde{W}^{\circ} = \bigcap_{P \in \widetilde{W}} H(P).$$

for details on spherical polar set, see for instance [1, 6]

Proposition 1 ([6]). Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function. Let $graph(\gamma) = \{(\theta, \gamma(\theta)) \in \mathbb{R}^{n+1} - \{0\} \mid \theta \in S^n\}$, where $(\theta, \gamma(\theta))$ is the polar plot expression for a point of $\mathbb{R}^{n+1} - \{0\}$. Then, \mathcal{W}_{γ} is characterized as follows:

$$\mathcal{W}_{\gamma} = Id^{-1} \circ \alpha_N \left(\left(\Psi_N \circ \alpha_N^{-1} \circ Id \left(\operatorname{graph}(\gamma) \right) \right)^{\circ} \right).$$

Proposition 2 ([6]). For any Wulff shape W_{γ} , the following set, too, is a Wulff shape:

$$Id^{-1} \circ \alpha_N \left(\left(\alpha_N^{-1} \circ Id \left(\mathcal{W}_{\gamma} \right) \right)^{\circ} \right)$$

Definition 1 ([6]). Let \mathcal{W}_{γ} be a Wulff shape. The Wulff shape given in Proposition 2 is called the *dual Wulff shape* of \mathcal{W}_{γ} .

A Wulff shape \mathcal{W}_{γ} said to be *self-dual Wulff shape* if the equality $W_{\gamma} = Id^{-1} \circ \alpha_N \left(\left(\alpha_N^{-1} \circ Id(\mathcal{W}_{\gamma}) \right)^{\circ} \right)$ holds, for details on self-dual Wulff shapes, see for instance [4].

The mapping inv : $\mathbb{R}^{n+1} - \{0\} \to \mathbb{R}^{n+1} - \{0\}$, defined as follows, is called the *inversion* with respect to the origin of \mathbb{R}^{n+1} .

$$\operatorname{inv}(\theta, r) = \left(-\theta, \frac{1}{r}\right).$$

Let Γ_{γ} be the boundary of the convex hull of $\operatorname{inv}(\operatorname{graph}(\gamma))$. If the equality $\Gamma_{\gamma} = \operatorname{inv}(\operatorname{graph}(\gamma))$ is satisfied, then γ is called a *convex integrand*. The notion of convex integrand was firstly introduced by J. Taylor in [8].

2. Main Results

Theorem 1 ([2]). Let $W \subset \mathbb{R}^{n+1}$ be a convex body containing the origin of \mathbb{R}^{n+1} as an interior point of W. Then, W is strictly convex if and only if its convex integrand γ_W is of class C^1 .

Theorem 2 ([3]). Let $\gamma : S^n \to \mathbb{R}_+$ be a continuous function and let \mathcal{W}_{γ} be the Wulff shape associated with γ . Suppose that the boundary of \mathcal{W}_{γ} is a C^1 submanifold. Then, γ must be the convex integrand of \mathcal{W}_{γ} .

3. Applications of Theorem 1

Since the boundary of the convex hull of a C^1 closed submanifold is a C^1 closed submanifold (for instance, see [7, 10]), as a corollary of Theorem 1, we have the following:

Corollary 1 ([2]). Let $\gamma : S^n \to \mathbb{R}_+$ be a function of class C^1 . Then, \mathcal{W}_{γ} is strictly convex.

In particular, we have the following:

Corollary 2 ([6], Theorem 1.3). Let $\gamma : S^n \to \mathbb{R}_+$ be a function of class C^1 . Then, \mathcal{W}_{γ} is never a polytope.

On the other hand, the converse of Corollary 1 does not hold in general (see Figure 4).

FIGURE 4. A strictly convex Wulff shape W_{γ} having non smooth support function γ .

Combining Theorem 1 and Proposition 1 yields the following:

Corollary 3 ([2]). A Wulff shape in \mathbb{R}^{n+1} is strictly convex if and only if the boundary of its dual Wulff shape is C^1 diffeomorphic to S^n .

In particular, we have the following:

Corollary 4 ([2]). A Wulff shape in \mathbb{R}^{n+1} is strictly convex and its boundary is C^1 diffeomorphic to S^n if and only if its dual Wulff shape is strictly convex and the boundary of it is C^1 diffeomorphic to S^n .

It is interesting to compare Corollary 4 and the following proposition:

Proposition 3 ([6]). A Wulff shape in \mathbb{R}^{n+1} is a polytope if and only if its dual Wulff shape is a polytope.

Finally, we give an application of Theorem 1 from the view point of pedal.

Definition 2 ([2]). Let p (resp., $F : S^n \to \mathbb{R}^{n+1}$) be a point of \mathbb{R}^{n+1} (resp., a C^1 embedding). Then, the *pedal of* $F(S^n)$ *relative to* p is the mapping $G : S^n \to \mathbb{R}^{n+1}$ which maps $\theta \in S^n$ to the nearest point in the tangent hyperplane to $F(S^n)$ at $F(\theta)$ from the given point p.

Let W be a Wulff shape in \mathbb{R}^{n+1} . Suppose that ∂W is C^1 diffeomorphic to S^n . Then, ∂W may be regarded as the graph of a certain C^1 embedding $F: S^n \to \mathbb{R}^{n+1}$, and γ_W is exactly the pedal of ∂W relative to the origin. Theorem 1 gives a sufficient condition for the pedal of ∂W relative to the origin to be smooth:

Corollary 5 ([2]). Suppose that a Wulff shape W in \mathbb{R}^{n+1} is strictly convex and its boundary is C^1 diffeomorphic to S^n . Then, the pedal of ∂W relative to the any interior point of W is of class C^1 .

References

- H. Han and T. Nishimura, The spherical dual transform is an isometry for spherical Wulff shapes, preprint (available from arXiv:1504.02845 [math.MG]).
- [2] H. Han and T. Nishimura, Strictly convex Wulff shapes and C¹ convex integrands, preprint (available from arXiv:1507.05162 [math.MG]).
- [3] H. Han and T. Nishimura, Uniqueness of the surface energy density for a Wulff shape with C^1 boundary, preprint (available from arXiv:1509.02786 [math.MG]).
- [4] H. Han and T. Nishimura, Self-dual Wulff shapes and spherical convex bodies of constant width $\pi/2$, preprint (available from arXiv:1511.04165 [math.MG]).
- [5] T. Nishimura, Normal forms for singularities of pedal curves produced by non-singular dual curve germs in Sⁿ, Geom Dedicata 133(2008), 59-66.
- [6] T. Nishimura and Y. Sakemi, Topological aspect of Wulff shapes, J. Math. Soc. Japan, 66 (2014), 89–109.
- [7] S. A. Robertson and M. C. Romero-Fuster, The convex hull of a hypersurface, Proc. London Math. Soc., 50(1985), 370–384.
- [8] J. E. Taylor, Crystalline variational problems, Bull. Amer. Math. Soc., 84(1978), 568–588.
- G. Wulff, Zur frage der geschwindindigkeit des wachstrums und der auflösung der krystallflachen, Z. Kristallographine und Mineralogie, 34(1901), 449–530.
- [10] V. M. Zakalyukin, Singularities of convex hulls of smooth manifolds, Functional Anal. Appl., 11(1977), 225–227(1978).

Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan

E-mail address: han-huhe-bx@ynu.jp