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Abstract. Let γ : Sn → R+ be a continuous function and let Wγ be the Wulff

shape associated with γ. We show that Wulff shape Wγ is strictly convex if
and only if convex integrand of Wγ is of class C1. We also show that if the

boundary of Wγ is a C1 submanifold, then γ must be the convex integrand of

Wγ .

1. Introduction

Let n be a positive integer. Given a continuous function γ : Sn → R+ where
Sn ⊂ Rn+1 is the unit sphere and R+ is the set consisting of positive real numbers,
the Wulff shape associated with γ, denoted by Wγ , is the following intersection

Wγ =
⋂
θ∈Sn

Γγ,θ.

Here, Γγ,θ is the following half-space:

Γγ,θ = {x ∈ Rn+1 | x · θ ≤ γ(θ)}.

Figure 1. A Wulff shape Wγ .

By definition, the Wulff shapeWγ is a convex body such that the origin of Rn+1

is an interior point of Wγ . The notion of Wulff shape was first introduced by G.
Wulff in [9]. Let Id : Rn+1 → Rn+1 × {1} be the map defined by Id(x) = (x, 1).
Denote the point (0, . . . , 0, 1) ∈ Rn+2 by N . The set Sn+1 −H(−N) is denoted by
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Sn+1
N,+ . Let αN : Sn+1

N,+ → Rn+1×{1} be the central projection relative to N , namely,

αN is defined as follows for any P = (P1, . . . , Pn+1, Pn+2) ∈ Sn+1
N,+ (see Figure 2):

αN (P1, . . . , Pn+1, Pn+2) =

(
P1

Pn+2
, . . . ,

Pn+1

Pn+2
, 1

)
.

Figure 2. The central projection αN .

Next, we consider the mapping ΨN : Sn+1 − {±N} → Sn+1
N,+ (see Figure 3),

defined by

ΨN (P ) =
1√

1− (N · P )2
(N − (N · P )P ).

The mapping ΨN was introduced in [5], has the following intriguing properties:

Figure 3. P ·ΨN (P ) = 0.

(1) For any P ∈ Sn+1 − {±N}, the equality P ·ΨN (P ) = 0 holds,
(2) for any P ∈ Sn+1 − {±N}, the property ΨN (P ) ∈ RN + RP holds,
(3) for any P ∈ Sn+1 − {±N}, the property N ·ΨN (P ) > 0 holds,
(4) the restriction ΨN |Sn+1

N,+−{N}
: Sn+1

N,+ − {N} → Sn+1
N,+ − {N} is a C∞ diffeo-

morphism.

For any point P ∈ Sn+1, let H(P ) be the closed hemisphere centered at P ,
namely,

H(P ) = {Q ∈ Sn+1|P ·Q ≥ 0},



where the dot in the center stands for the scalar product of two vectors P,Q ∈ Rn+2.

For any non-empty subset W̃ ⊂ Sn+1, the spherical polar set of W̃ , denoted by W̃ ◦,
is defined as follows:

W̃ ◦ =
⋂
P∈W̃

H(P ).

for details on spherical polar set, see for instance [1, 6]

Proposition 1 ([6]). Let γ : Sn → R+ be a continuous function. Let graph(γ) =
{(θ, γ(θ)) ∈ Rn+1 − {0} | θ ∈ Sn}, where (θ, γ(θ)) is the polar plot expression for a
point of Rn+1 − {0}. Then, Wγ is characterized as follows:

Wγ = Id−1 ◦ αN
((

ΨN ◦ α−1N ◦ Id (graph(γ))
)◦)

.

Proposition 2 ([6]). For any Wulff shape Wγ , the following set, too, is a Wulff
shape:

Id−1 ◦ αN
((
α−1N ◦ Id (Wγ)

)◦)
.

Definition 1 ([6]). LetWγ be a Wulff shape. The Wulff shape given in Proposition
2 is called the dual Wulff shape of Wγ .

A Wulff shape Wγ said to be self-dual Wulff shape if the equality Wγ = Id−1 ◦
αN

((
α−1N ◦ Id (Wγ)

)◦)
holds, for details on self-dual Wulff shapes, see for instance

[4].

The mapping inv : Rn+1 − {0} → Rn+1 − {0}, defined as follows, is called the
inversion with respect to the origin of Rn+1.

inv(θ, r) =

(
−θ, 1

r

)
.

Let Γγ be the boundary of the convex hull of inv(graph(γ)). If the equality Γγ =
inv(graph(γ)) is satisfied, then γ is called a convex integrand. The notion of convex
integrand was firstly introduced by J. Taylor in [8].

2. Main Results

Theorem 1 ([2]). Let W ⊂ Rn+1 be a convex body containing the origin of Rn+1

as an interior point of W . Then, W is strictly convex if and only if its convex
integrand γ

W
is of class C1.

Theorem 2 ([3]). Let γ : Sn → R+ be a continuous function and let Wγ be the
Wulff shape associated with γ. Suppose that the boundary of Wγ is a C1 submani-
fold. Then, γ must be the convex integrand of Wγ .

3. Applications of Theorem 1

Since the boundary of the convex hull of a C1 closed submanifold is a C1 closed
submanifold (for instance, see [7, 10]), as a corollary of Theorem 1, we have the
following:

Corollary 1 ([2]). Let γ : Sn → R+ be a function of class C1. Then, Wγ is strictly
convex.

In particular, we have the following:



Corollary 2 ([6], Theorem 1.3). Let γ : Sn → R+ be a function of class C1. Then,
Wγ is never a polytope.

On the other hand, the converse of Corollary 1 does not hold in general (see Figure
4).

Figure 4. A strictly convex Wulff shape Wγ having non smooth
support function γ.

Combining Theorem 1 and Proposition 1 yields the following:

Corollary 3 ([2]). A Wulff shape in Rn+1 is strictly convex if and only if the
boundary of its dual Wulff shape is C1 diffeomorphic to Sn.

In particular, we have the following:

Corollary 4 ([2]). A Wulff shape in Rn+1 is strictly convex and its boundary is
C1 diffeomorphic to Sn if and only if its dual Wulff shape is strictly convex and the
boundary of it is C1 diffeomorphic to Sn.

It is interesting to compare Corollary 4 and the following proposition:

Proposition 3 ([6]). A Wulff shape in Rn+1 is a polytope if and only if its dual
Wulff shape is a polytope.

Finally, we give an application of Theorem 1 from the view point of pedal.

Definition 2 ([2]). Let p (resp., F : Sn → Rn+1) be a point of Rn+1 (resp., a C1

embedding). Then, the pedal of F (Sn) relative to p is the mapping G : Sn → Rn+1

which maps θ ∈ Sn to the nearest point in the tangent hyperplane to F (Sn) at
F (θ) from the given point p.

Let W be a Wulff shape in Rn+1. Suppose that ∂W is C1 diffeomorphic to Sn.
Then, ∂W may be regarded as the graph of a certain C1 embedding F : Sn → Rn+1,
and γ

W
is exactly the pedal of ∂W relative to the origin. Theorem 1 gives a sufficient

condition for the pedal of ∂W relative to the origin to be smooth:

Corollary 5 ([2]). Suppose that a Wulff shape W in Rn+1 is strictly convex and
its boundary is C1 diffeomorphic to Sn. Then, the pedal of ∂W relative to the any
interior point of W is of class C1.
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