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Self-avoiding walk (SAW) is a statistical-mechanical model that the chemist
P. J. Froly first introduced for studying the behavior of linear polymers [4, 5].
Now we have many rigorous results on SAW, especially in d > 4 due to the
lace expansion [1, 7]. However in two or three dimensions, there still remain
open problems [8]. In 1981, B. K. Chakrabarti and J. Kartész first introduced
the random environment to SAW [2]. Our interest is to understand how the
random environment affects the behavior of the observables concerning SAW
around the critical point. In this talk, we will show the quenched critical
point is almost surely a constant and estimate upper and lower bounds.

Model and the results

Let Bd denote the set of nearest-neighbor bonds in Zd, let Ω(x) be the set
of nearest-neighbor self-avoiding paths on Zd from x. The self-avoiding walk
is the set of the trajectries of the walk that can not return the point once it
visited. We call this property self-avoidance constraint. By this property, we
can regard SAW paths as the statistical-mechanical model for linear poly-
mers. Denoting the length of ω by |ω| (i.e., |ω| = n for ω = (ω0, . . . , ωn))
and the energy cost of a bond between consecutive monomers by h ∈ R, we
define the susceptibility as

χh =
∑

ω∈Ω(x)

e−h|ω|,

which is independent of the location of the reference point x ∈ Zd. Two
other key observables are the two-point function and the number of SAWs
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of length n:

Gh(x) =
∑

ω∈Ω(o,x)

e−h|ω|, c(n) =
∑

ω∈Ω(x)

1{|ω|=n},

where o is the origin of Zd, 1{··· } is the indicator function, and Ω(o, x) is the
set of nearest-neighbor self-avoiding paths on Zd from o to x. Obviously,

χh =
∑
x∈Zd

Gh(x) =
∞∑
n=0

e−hnc(n).

Due to subadditivity of c(n), we can show that χh < ∞ if and only if h >
log µ, where µ is the connective constant for SAW [7]:

µ = lim
n→∞

c(n)1/n = inf
n
c(n)1/n.

Therefore, h = log µ is the critical point of the susceptibility. Many rigorous
results on the behavior of these observables around the critical point h =
log µ have been proven. However, there still remain many challenging open
problems in two and three dimensions. See [8] and the references therein.

Let X = {Xb}b∈Bd be a collection of i.i.d. bounded random variables
whose law and expectation are denoted by PX and EX , respectively. Sim-
ilarly to the homogeneous case, we define the quenched susceptibility at
x ∈ Zd:

χ̂h,β,X(x) =
∑

ω∈Ω(x)

e−
∑|ω|

j=1(h+βXbj
),

where bj is the j-th bond of ω. Because of the inhomogeneity of X, the
quenched susceptibility is not translation invariant and does depend on the
location of the reference point x. We also define the random media version
counterpart of the number of SAWs c(n) in random environment:

ĉβ,X(x;n) =
∑

ω∈Ω(x)

e−β
∑|ω|

j=1 Xbj1{|ω|=n}.

Therefore, we have

χ̂h,β,X(x) =
∞∑
n=0

e−hnĉβ,X(x;n).

Since χ̂h,β,X(x) is monotonic in h, we can define the quenched critical point:

ĥq
β,X(x) = inf{h ∈ R : χ̂h,β,X(x) < ∞}.



We denote c(n) be the number of the homogeneous SAWs. By virtue
of the self-avoidance constraint on ω and the i.i.d. property of X, we can
directly compute the annealed susceptibility EX [χ̂h,β,X(x)]

EX [χ̂h,β,X(x)] =
∞∑
n=0

e−(h−log λβ)nc(n),

where λβ = EX [e−βXb ]. Then the annealed critical point must be defined:

ha
β = log µ+ log λβ,

so that EX [χ̂h,β,X(x)] < ∞ if and only if h > ha
β. By Jensen’s inequality,

ha
β ≥ log µ− βEX [Xb].

The following theorem is the main result of this talk.

Theorem 1. Let d ≥ 1 and β ≥ 0. The quenched critical point ĥq
β,X(x)

is PX-almost surely a constant that does not depend on the location of the
reference point x ∈ Zd. Moreover, by abbreviating ĥq

β,X(x) as ĥq
β, we have

log µ− βEX [Xb] ≤ ĥq
β ≤ ha

β, PX-almost surely.

For d = 1, in particular, the lower bound is an equality.

The key elements for the proof are the following:

• To prove that the quenched critical point is PX-a.s. a constant we show
translation invariance and ergodicity by following similar analysis to
that in H. Lacoin [6].

• The upper bound (generally called the annealed bound) is trivial. On
the other hand, the lower bound is derived from the second moment
estimate by using the Paley-Zygmund inequality.

In our main theorem, for d = 1, the lower bound is an equality. We want
to discuss what happens in d ≥ 2:

• In two dimension, H. Lacoin improve the upper bound by using frac-
tional moment method [6].

• In high dimensions, can we estimate the upper and lower bound more
sharply??
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