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1. Introduction

The classification problem of singular points of C∞ map germs is one of the most impor-
tant problems in Singularity theory. The classical classification is done via A-equivalence,
where we take C∞-diffeomorphism germs in the source and the target. However, this is
a difficult problem and it presents a lot of rigidity. Then it seems natural to investigate
the classification of map germs up to weaker equivalence relations. Here we consider
topological equivalence or C0-A-equivalence, where the changes of coordinates are home-
omorphisms instead of C∞-diffeomorphisms.

This work is devoted to the topological classification of C∞ map germs from R3 to R2

which are finitely determined. The topological structure of a finitely determined map
germ f : (R3, 0) → (R2, 0) is determined by the so-called link of f (cf. [6]). The link
of f is obtained by taking a small enough representative f : U ⊂ R3 → R2 and the
intersection of its image with a small enough sphere S1

δ centered at the origin in R2.
When f has isolated zeros (i.e., f−1(0) = {0}), the link is a stable map γ : S2 → S1 and
f is topologically equivalent to the cone of γ. As a consequence, two finitely determined
map germs f, g : (R3, 0)→ (R2, 0) are topologically equivalent if their associated links are
topologically equivalent.

2. Finite determinacy and the link of a map germ

Two C∞ map germs f, g : (R3, 0) → (R2, 0) are A-equivalent if there exist C∞-
diffeomorphism germs ψ : (R3, 0) → (R3, 0) and φ : (R2, 0) → (R2, 0) such that f =
φ ◦ g ◦ ψ. If φ, ψ are homeomorphisms instead of C∞-diffeomorphisms, then we say that
f and g are topologically equivalent (or C0-A-equivalent).

For simplicity, we will write just diffeomorphism instead of C∞-diffeomorphism.
We say that f : (R3, 0)→ (R2, 0) is k-determined if for any map germ g with the same

k-jet, we have that g is A-equivalent to f . We say that f is finitely determined if it is
k-determined for some k.

Let f : U → R2 be a C∞ map, where U ⊂ R3 is an open subset. We denote by
S(f) = {p ∈ U | Jf(p) does not have rank 2} the singular set of f , where Jf(p) is the
Jacobian matrix of f . We also denote the discriminant set of f by ∆(f) = f(S(f)).

Let f : (R3, 0) → (R2, 0) be a finitely determined map germ. Then there exists a
representative f : U ⊂ R3 → R2 such that

i) S(f) ∩ f−1(0) = {0},
ii) the restriction f |U −{0} has only definite and indefinite simple fold singularities.

If f is finitely determined, then its discriminant ∆(f) is a plane curve with an isolated
singularity at the origin. The number of half branches of ∆(f) will play a crucial role in
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the analysis of the Reeb graph associated to link of f and consequently, in the topological
classification of f .

Denote by Jr(n, p) the r-jet space from (Rn, 0) to (Rp, 0). For positive integers r
and s with s ≥ r, let πsr : Js(n, p) → Jr(n, p) be the canonical projection defined by
πsr(j

sf(0)) = jrf(0). For a positive number ε > 0 we set

Dn
ε = {x ∈ Rn | ‖x‖2 ≤ ε}, Bn

ε = {x ∈ Rn | ‖x‖2 < ε} and Sn−1
ε = {x ∈ Rn | ‖x‖2 = ε}.

We denote Dn, Bn and Sn−1 the standard disk, ball and sphere of radius 1, respectively.
T. Fukuda has proved the following cone structure theorem in his papers [5, 6]:

Theorem 2.1. For any semialgebraic subset W of Jr(n, p), there exist an integer s (s ≥
r) depending only on n, p and r, and there exists a closed semialgebraic subset ΣW of
(πsr)

−1(W ) having codimension ≥ 1 such that for any C∞ map f : Rn → Rp with jsf(0)
belonging to (πsr)

−1(W ) \ ΣW we have the following properties:

(A) The case f−1(0) = {0}: there is ε0 > 0 such that for any number ε with 0 <
ε ≤ ε0 we have:

(A-i) the set S̃n−1
ε = f−1(Sp−1

ε ) is a C∞ submanifold without boundary which is
diffeomorphic to the standard unit sphere Sn−1.

(A-ii) The restricted map f |S̃n−1
ε : S̃n−1

ε → Sp−1
ε is topologically stable (C∞ stable if

(n, p) is a nice pair in Mather’s sense).
(A-iii) If D̃n−1

ε = f−1(Dp−1
ε ), then the restricted map f |D̃n−1

ε : D̃n−1
ε → Dp

ε is topo-
logically equivalent to the cone of f |S̃n−1

ε .

(B) The case f−1(0) 6= {0}: there exist a positive number ε0 and a strictly increas-
ing C∞ function δ : [0, ε0]→ [0,∞) with δ(0) = 0 such that for every ε and δ with
0 < ε ≤ ε0 and 0 < δ ≤ δ(ε) we have:

(B-i) f−1(0)∩ Sn−1
ε is an (n− p− 1)-dimensional manifold and it is diffeomorphic

to f−1(0) ∩ Sn−1
ε0

.

(B-ii) Dn
ε ∩ f−1(Sp−1

δ ) is a C∞ manifold, in general with boundary and it is diffeo-

morphic to Dn
ε0
∩ f−1(Sp−1

δ(ε0)).

(B-iii) the restriction f |Dn
ε ∩ f−1(Sp−1

δ ) : Dn
ε ∩ f−1(Sp−1

δ ) → Sp−1
δ is a topologically

stable map (C∞ stable if (n, p) is a nice pair in Mather’s sense) and its topo-
logical class is independent of ε and δ.

Assuming that f is r-determined for some r and taking W = {jrf(0)}, we can apply
Theorem 2.1 to obtain a representative of f satisfying (A) or (B), depending on if f−1(0) =
{0} or f−1(0) 6= {0}. Note that when n ≤ p we always have f−1(0) = {0} but when n > p
we may have the two possibilities.

Definition 2.2. Let f : (R3, 0) → (R2, 0) be a finitely determined map germ such that
f−1(0) = {0}. We say that the stable map f |S̃2

ε : S̃2
ε → S1

ε is the link of f , where f is a
representative that satisfies the Fukuda’s conditions (A) of Theorem 2.1 adapted for case
n = 3 and p = 2.

Corollary 2.3. Two finitely determined map germs f, g : (R3, 0)→ (R2, 0) with f−1(0) =
{0} = g−1(0) are topologically equivalent if their associated links are topologically equiva-
lent.



3. The generalized Reeb graph

The Reeb graph was introduced by Reeb in [7] and it is well known that it is a complete
topological invariant for Morse functions from S2 to R (see [1]).

Proposition 3.1. Let γ : S2 → S1 be a stable map. Then γ is not a regular map.

Given a continuous map f : X → Y between topological spaces, we consider the
following equivalence relation on X: x ∼ y ⇔ f(x) = f(y) and x and y are in the same
connected component of f−1(f(x)).

Proposition 3.2. Let γ : S2 → S1 be a stable map. Then the quotient space S2/ ∼
admits the structure of a connected graph in the following way:

(1) the vertices are the connected components of level curves γ−1(v), where v ∈ S1 is
a critical value;

(2) each edge is formed by points that correspond to connected components of level
curves γ−1(v), where v ∈ S1 is a regular value.

Each vertex of the graph can be of three topological types, depending on if the connected
component has a maximum/minimum critical point, a saddle point or just regular points.

Let v1, . . . , vr ∈ S1 be the critical values of γ. We choose a base point v0 ∈ S1 and an
orientation. We can reorder the critical values such that v0 ≤ v1 < . . . < vr and we label
each vertex with the index i ∈ {1, . . . , r}, if it corresponds to the critical value vi.

Definition 3.3. The graph given by S2/ ∼ together with the the labels of the vertices,
as previously defined, is said to be the generalized Reeb graph associated to γ : S2 → S1.

For simplicity, from now on we will just call Reeb graph to the generalized Reeb graph,
unless otherwise specified.

Proposition 3.4. Let γ : S2 → S1 be a stable map. Then the Reeb graph of γ is a tree.

Let γ, δ : S2 → S1 be two stable maps. Let Γγ and Γδ be their respective Reeb graphs.
Consider the induced quotient maps γ̄ : Γγ → S1

γ and δ̄ : Γδ → S1
δ , where S1

γ , S
1
δ denote

S1 with the graph structure whose vertices are the critical values of γ, δ respectively.

Definition 3.5. An isomorphism between two graphs Γ1 and Γ2 is a bijection f from
V (Γ1) to V (Γ2) such that two vertices v and w are adjacent in Γ1 if and only if f(v) and
f(w) are adjacent in Γ2, where V (Γi) = {vertices of Γi}.

Definition 3.6. We say that Γγ is equivalent to Γδ and we denote it by Γγ ∼ Γδ, if there
exist graph isomorphisms j : Γγ → Γδ and l : S1

γ → S1
δ , such that the following diagram

is commutative:

Vγ
γ̄|Vγ−−−→ ∆γ

j|Vγ

y yl|∆γ
Vδ

δ̄|Vδ−−−→ ∆δ

where Vγ = {vertices of Γγ}, Vδ = {vertices of Γδ} and ∆γ and ∆δ are their respective
discriminant sets.

Theorem 3.7. Let γ, δ : S2 → S1 be two stable maps. If γ and δ are topologically
equivalent then their respective Reeb graphs are equivalent.



The above theorem allows us to extend the definition of Reeb graph for C0-stable maps
between topological spheres.

Theorem 3.8. Let γ, δ : S2 → S1 be two stable maps such that Γγ ∼ Γδ. Then γ is
A-equivalent to δ.

Corollary 3.9. Let γ, δ : S2 → S1 be two stable maps. Then the following statements are
equivalent:

(1) γ, δ are A-equivalent,
(2) γ, δ are topologically equivalent,
(3) Γγ ∼ Γδ.

Theorem 3.10. Let f, g : (R3, 0) → (R2, 0) be two finitely determined map germs such
that f−1(0) = {0} = g−1(0). If f and g are topologically equivalent then the Reeb graphs
of their links are equivalent.

Again, Theorem 3.10 together with Corollary 2.3 and Theorem 3.8 show that the Reeb
graph is a complete topological invariant for map germs from with isolated zeros.

Corollary 3.11. Let f, g : (R3, 0) → (R2, 0) be finitely determined map germs such that
f−1(0) = {0} = g−1(0). Then the following statements are equivalent:

(1) f, g are topologically equivalent,
(2) the Reeb graphs of the links of f, g are equivalent,
(3) the links of f, g are topologically equivalent.

References

[1] V.I. Arnold, Topological classification of Morse functions and generalisations of Hilbert’s 16-th prob-
lem, Math. Phys. Anal. Geom. Vol. 10 (2007) 227–236.

[2] E.B. Batista, J.C.F. Costa, J.J. Nuño-Ballesteros, The Reeb graph of a map germ from R3 to R2

with isolated zeros, to appear in Proc. Edinb. Math. Soc. (2).
[3] E.B. Batista, J.C.F. Costa, J.J. Nuño-Ballesteros, The Reeb graph of a map germ from R3 to R2

with non isolated zeros, preprint (2015).
[4] J.C.F. Costa, J.J. Nuño-Ballesteros, Topological K-classification of finitely determined map germs,

Geom. Dedicata 166 (2013) 147–162.
[5] T. Fukuda, Local Topological Properties of Differentiable Mappings I, Invent. Math. 65 no. 2

(1981/82) 227–250.
[6] T. Fukuda, Local Topological Properties of Differentiable Mappings II, Tokyo J. Math. 8, no.2 (1985)

501–520.
[7] G. Reeb, Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une fonction
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