Vector fields on differentiable schemes and derivations on differentiable rings

Tatsuya Yamashita

1 Introduction

Let M, N be C^{∞} -manifolds and $f: N \to M$ a C^{∞} -map. Write an \mathbb{R} -algebra $C^{\infty}(M)$ as a set of C^{∞} -functions on M, and a homomorphism $f^*: C^{\infty}(M) \ni h \mapsto h \circ f \in C^{\infty}(N)$.

We can regard vector fields $V : N \to TM$ along f as an \mathbb{R} -derivation $V : C^{\infty}(M) \to C^{\infty}(N)$ by f^* i.e. V is an \mathbb{R} -linear map such that

 $V(h_1h_2) = f^*(h_1) \cdot V(h_2) + f^*(h_2) \cdot V(h_1) \text{ for any } h_1, h_2 \in C^{\infty}(M).$

Note that in this case, V turns to be a C^{∞} -derivation, i.e. V satisfies that

$$V(g \circ (h_1, \dots, h_l)) = \sum_{i=1}^l f^* \left(\frac{\partial g}{\partial x_i} \circ (h_1, \dots, h_l)\right) \cdot V(h_i)$$

for any $l \in \mathbb{N}, h_1, \dots, h_l \in C^{\infty}(M)$, and $g \in C^{\infty}(\mathbb{R}^l)$.

 $C^{\infty}(M)$ is a kind of " C^{∞} -ring" with the property: for any $l \in \mathbb{N}$ and $g \in C^{\infty}(\mathbb{R}^{l})$, there exists an operation $\Phi_{f}: C^{\infty}(M)^{l} \ni (h_{1}, \ldots, h_{l}) \mapsto g \circ (h_{1}, \ldots, h_{l}) \in C^{\infty}(M)$. For a C^{∞} -ring $\mathfrak{C}, \mathfrak{D}$ and a homomorphism $\phi: \mathfrak{C} \to \mathfrak{D}$, when does an \mathbb{R} -derivation $v: \mathfrak{C} \to \mathfrak{D}$ over ϕ become a C^{∞} -derivation?

1.1 Motivations for manifolds and C^{∞} -rings

 C^{∞} -ringed spaces are sheaves with C^{∞} -rings. There exists a functor Spec : $\mathbf{C}^{\infty}\mathbf{Rings}^{\mathrm{op}} \to \mathbf{LC}^{\infty}\mathbf{RS}$ such that C^{∞} -manifolds are regarded as " C^{∞} -schemes" $M = Spec(C^{\infty}(M))$. We can regard a C^{∞} -manifold M as a "space" associated with $C^{\infty}(M)$ and a vector field over M as a derivation $C^{\infty}(M) \to C^{\infty}(M)$ by the functor Spec.

Then, what should we regard as a vector field on C^{∞} -scheme? To define and study of singular points and vector fields on C^{∞} -schemes, we study properties of derivations $V : \mathfrak{C} \to \mathfrak{C}$ of C^{∞} -rings.

2 Differentiable rings and their derivations

2.1 The definition of C^{∞} -rings

We define C^{∞} -ring with the following definition.

Definition 2.1 (E. J. Dubuc, c.f. D. Joyce) 1. A C^{∞} -ring (differentiable ring) is a set \mathfrak{C} which satisfies that: for any $l \in \{0\} \cup \mathbb{N}$ and any C^{∞} -map $f : \mathbb{R}^l \to \mathbb{R}$, there exists an operation $\Phi_f : \mathfrak{C}^l \to \mathfrak{C}$ such that

• for any $k \in \{0\} \cup \mathbb{N}$, any C^{∞} -maps $g : \mathbb{R}^k \to \mathbb{R}$ and $f_i : \mathbb{R}^l \to \mathbb{R}(i = 1, \cdots, k)$,

 $\Phi_{g}(\Phi_{f_{1}}(c_{1},\ldots,c_{l}),\ldots,\Phi_{f_{k}}(c_{1},\ldots,c_{l}))=\Phi_{g\circ(f_{1},\ldots,f_{k})}(c_{1},\ldots,c_{l}) \text{ for any } c_{1},\cdots,c_{l}\in\mathfrak{C}.$

• for all projections $\pi_i(x_1,\ldots,x_l) = x_i(i=1,\cdots,l), \ \Phi_{\pi_i}(c_1,\ldots,c_l) = c_i \text{ for any } c_1,\cdots,c_l \in \mathfrak{C}.$

- 2. Let \mathfrak{C} and \mathfrak{D} be C^{∞} -rings. A morphism between C^{∞} -rings is a map $\phi : \mathfrak{C} \to \mathfrak{D}$ such that $\phi(\Phi_f(c_1, \ldots, c_n)) = \Psi_f(\phi(c_1), \ldots, \phi(c_n)).$
- 3. We will write \mathbf{C}^{∞} **Rings** for the category of C^{∞} -rings.

Any C^{∞} -ring \mathfrak{C} has a structure of the commutative \mathbb{R} -algebra. Define addition on \mathfrak{C} by $c + c' := \Phi_{(x,y)\mapsto x+y}(c,c')$. Define multiplication on \mathfrak{C} by $c \cdot c' := \Phi_{(x,y)\mapsto xy}(c,c')$. Define scalar multiplication by $\lambda \in \mathbb{R}$ by $\lambda c := \Phi_{x\mapsto\lambda x}(c)$. Define elements 0 and 1 in \mathfrak{C} by $0_{\mathfrak{C}} := \Phi_{\emptyset \mapsto 0}(\emptyset)$ and $1_{\mathfrak{C}} := \Phi_{\emptyset \mapsto 1}(\emptyset)$.

Example 2.1 1. Suppose that M is a C^{∞} -manifold.

- (a) The set $C^{\infty}(M)$ has a structure of C^{∞} -ring by $(c_1, \ldots, c_n) \mapsto f \circ (c_1, \ldots, c_n)$.
- (b) Let I ⊂ C[∞](M) be an ideal of an ℝ-algebra. We can define a quotient ℝ-algebra C[∞](M)/I. For any natural number l ∈ N and a C[∞]-map f ∈ C[∞](ℝ^l), f(x₁ + y₁,...,x_l + y_l) f(x₁,...,x_l) = ∑^l_{i=1} y_ig_i(x, y) by Hadamard's lemma. Then f ∘ (c₁ + i₁,...,c_n + i_n) f ∘ (c₁,...,c_n) = ∑ⁿ_{k=1} i_k · g_k ∘ (c₁,...,c_n, i₁,...,i_n) for any c₁,...,c_n ∈ 𝔅 and i₁,...,i_n ∈ I. Therefore the ℝ-algebra C[∞](M)/I has a structure of C[∞]-ring.
 (c) The set C[∞]_p(M)/m_p^{k+1} of k-jet functions on a point p ∈ M has a structure of C[∞]-ring.
- 2. The set of real numbers \mathbb{R} has a structure of C^{∞} -ring by $(r_1, \ldots, r_n) \mapsto f(r_1, \ldots, r_n)$.

We define two derivations on C^{∞} -rings as followings.

Definition 2.2 (R. Hartshorne, D. Joyce) Let \mathfrak{C} be a C^{∞} -ring and \mathfrak{M} be a \mathfrak{C} -module.

1. An \mathbb{R} -derivation is an \mathbb{R} -linear map $d: \mathfrak{C} \to \mathfrak{M}$ such that

$$d(c_1c_2) = c_2 \cdot d(c_1) + c_1 \cdot d(c_2) \text{ for any } c_1, c_2 \in \mathfrak{C}.$$

2. A C^{∞} -derivation is an \mathbb{R} -linear map $d : \mathfrak{C} \to \mathfrak{M}$ such that

$$d(\Phi_f(c_1,\ldots,c_n)) = \sum_{i=1}^n (\Phi_{\frac{\partial f}{\partial x_i}}(c_1,\ldots,c_n)) \cdot d(c_i) \text{ for any } n \in \mathbb{N}, f \in C^{\infty}(\mathbb{R}^n) \text{ and } c_1,\ldots,c_n \in \mathfrak{C}$$

By definition, we have that any C^{∞} -derivation is an \mathbb{R} -derivation.

Example 2.2 Let M be a C^{∞} -manifold and $C^{\infty}(T^*M)$ the set of C^{∞} -sections to the cotangent bundle T^*M on M.

- 1. Define \mathbb{R} -mapping $d : C^{\infty}(M) \to C^{\infty}(T^*M)$ as $(d(f))(x) : T_xM \ni v \mapsto v(f) \in \mathbb{R}$ for any $f \in C^{\infty}(M)$ and $x \in M$. This \mathbb{R} -mapping d is the C^{∞} -derivation.
- 2. Let $V: M \to TM$ be a C^{∞} -vector field of M. Define a smooth function V(f) as $V(f): M \ni x \mapsto V_x(f) \in \mathbb{R}$. We can regard $V: C^{\infty}(M) \to C^{\infty}(M)$ as the \mathbb{R} -derivation.

2.2 k-jet projections of C^{∞} -ring

Definition 2.3 (D. Joyce) Let \mathfrak{C} be a C^{∞} -ring.

- 1. An \mathbb{R} -point of \mathfrak{C} is a homomorphism $p : \mathfrak{C} \to \mathbb{R}$ of C^{∞} -rings. The set of \mathbb{R} -points $p : \mathfrak{C} \to \mathbb{R}$ is a base space of the C^{∞} -scheme $Spec\mathfrak{C}$.
- 2. For any \mathbb{R} -point $p : \mathfrak{C} \to \mathbb{R}$, the localization $\mathfrak{C}_p := \mathfrak{C}[s^{-1}|s \in \mathfrak{C}, p(s) \neq 0]$ by $\{s \in \mathfrak{C} | p(s) \neq 0\}$ always exists with the unique maximal ideal $m_p \subset \mathfrak{C}_p(\mathfrak{C}_p/m_p = \mathbb{R})$.
- 3. For any nonnegative number $k \in \{0\} \cup \mathbb{N}$, define natural projections as

$$j_p^k: \mathfrak{C} \to \mathfrak{C}_p/m_p^{k+1}, \ j_p^{\infty}: \mathfrak{C} \to \mathfrak{C}_p/m_p^{\infty}(m_p^{\infty}:= \cap_{k \in \mathbb{N}} m_p^k),$$
$$j^k:=(j_p^k)_{p:\mathfrak{C} \to \mathbb{R}}: \mathfrak{C} \to \prod_{p:\mathfrak{C} \to \mathbb{R}} \mathfrak{C}_p/m_p^{k+1}, \ j^{\infty}:=(j_p^{\infty})_{p:\mathfrak{C} \to \mathbb{R}}: \mathfrak{C} \to \prod_{p:\mathfrak{C} \to \mathbb{R}} \mathfrak{C}_p/m_p^{\infty}.$$

Example 2.3 Let M be a C^{∞} -manifold and $p \in M$. For the \mathbb{R} -point $e_p : C^{\infty}(M) \ni f \mapsto f(p) \in \mathbb{R}$, a localization $(C^{\infty}(M))_{e_p}$ is isomorphic to the set $C_p^{\infty}(M)$ of germs of C^{∞} -functions at p. Its unique maximal ideal is $m_{e_p} = \{[f, U]_p \in C_p^{\infty}(M) | f(p) = 0\}.$

2.3 k-jet determined C^{∞} -rings

Definition 2.4 (1,I. Moerdijk and G.E. Reyes, 2,3, Yamashita) Let \mathfrak{C} be a C^{∞} -ring.

- 1. \mathfrak{C} is **point determined** if for each $c \in \mathfrak{C}$, c = 0 if and only if p(c) = 0 for all \mathbb{R} -point $p : \mathfrak{C} \to \mathbb{R}$.
- 2. Let $k \in \mathbb{N}$. \mathfrak{C} is k-jet determined if $j^k : \mathfrak{C} \to \prod_{p:\mathfrak{C} \to \mathbb{R}} \mathfrak{C}_p/m_p^{k+1}$ is injective.
- 3. \mathfrak{C} is ∞ -jet determined if $j^{\infty} : \mathfrak{C} \to \prod_{p:\mathfrak{C} \to \mathbb{R}} \mathfrak{C}_p / m_p^{\infty}$ is injective.

Example 2.4 Suppose that M is a C^{∞} -manifold.

- 1. $C^{\infty}(M)$ is a point determined C^{∞} -ring.
- 2. $C_p^{\infty}(M)/m_p^{k+1}$ is not a point determined C^{∞} -ring, but a k-jet determined C^{∞} -ring.

For two C^{∞} -rings \mathfrak{C} and \mathfrak{D} with operations $\Phi_f : \mathfrak{C}^n \to \mathfrak{C}$ and $\Psi_f : \mathfrak{D}^n \to \mathfrak{D}$ for $f \in C^{\infty}(\mathbb{R}^n)$, we can define a direct product $\mathfrak{C} \times \mathfrak{D}$. This product has a structure of C^{∞} -ring by $\Xi_f : (\mathfrak{C} \times \mathfrak{D})^n \to \mathfrak{C} \times \mathfrak{D}$ as

 $\Xi_f: (\mathfrak{C} \times \mathfrak{D})^n \ni ((c_1, d_1), \dots, (c_n, d_n)) \mapsto (\Phi_f(c_1, \dots, c_n), \Psi_f(d_1, \dots, d_n)) \in \mathfrak{C} \times \mathfrak{D}.$

For direct product of k-jet determined C^{∞} -rings, we have a following lemma.

Lemma 2.1 (Yamashita) Let \mathfrak{C} and \mathfrak{D} be k,l-jet determined C^{∞} -rings and $k' := \min(k,l)$. The direct product $\mathfrak{C} \times \mathfrak{D}$ is a k'-jet determined C^{∞} -ring.

Example 2.5 Let M and M' be m-dimensional C^{∞} -manifolds. Write $M \sqcup M'$ as a disjoint union of C^{∞} -manifolds M and M'. $C^{\infty}(M)$ and $C^{\infty}(M')$ are point determined C^{∞} -rings. Furthermore, $C^{\infty}(M) \times C^{\infty}(M') = C^{\infty}(M \sqcup M')$ is a point determined C^{∞} -ring, too.

Proposition 2.1 (Yamashita) Let \mathfrak{C} be a C^{∞} -ring and $k, l = \{0\} \cup \mathbb{N} \cup \{\infty\} (k \leq l)$.

If \mathfrak{C} is a k-jet determined C^{∞} -ring, then \mathfrak{C} is also l-jet determined.

3 Algebraic viewpoints

3.1 The universality of cotangent bundles

Proposition 3.1 (Yamashita) Let \mathfrak{C} be a C^{∞} -ring and $\mathfrak{F}_{\mathfrak{C}}$ a free \mathfrak{C} -module generated by $d(c)(c \in \mathfrak{C})$.

Define $\mathfrak{C}\text{-submodules}$ of $\mathfrak{F}_{\mathfrak{C}}$ as

$$\mathfrak{M}_{\mathfrak{C},\mathbb{R}} := \left\langle d(c_1c_2) - c_2d(c_1) + c_1d(c_2) \right\rangle_{\mathfrak{C}} \text{ and}$$
$$\mathfrak{M}_{\mathfrak{C},C^{\infty}} := \left\langle d\left(\Phi_f(c_1,\ldots,c_n)\right) - \sum_{i=1}^n \Phi_{\frac{\partial f}{\partial x_i}}(c_1,\ldots,c_n)d(c_i) \right\rangle_{\mathfrak{C}}$$

If $\mathfrak{M}_{\mathfrak{C},\mathbb{R}} = \mathfrak{M}_{\mathfrak{C},C^{\infty}}$, any \mathbb{R} -derivation $d: \mathfrak{C} \to \mathfrak{M}$ is C^{∞} -derivation.

Example 3.1 Let $\mathfrak{C} \mathfrak{D}$ be C^{∞} -rings and $\phi : \mathfrak{C} \to \mathfrak{D}$ a homomorphism of C^{∞} -rings. Suppose that \mathfrak{C} is a local C^{∞} -ring which has a maximal ideal m with $m^{k+1} = 0 (k \in \{0\} \cup \mathbb{N})$.

 \mathfrak{C} has a property that $\mathfrak{M}_{\mathfrak{C},\mathbb{R}} = \mathfrak{M}_{\mathfrak{C},C^{\infty}}$ because $\Phi_f(c_1,\ldots,c_n)$ is the sum of $\Phi_{\frac{\partial^{\alpha}f}{\partial-\alpha}}(c_1,\ldots,c_n)$.

Therefore, any \mathbb{R} -derivation $V : \mathfrak{C} \to \mathfrak{D}$ is a C^{∞} -derivation.

3.2 The relation between k-jet determined C^{∞} -rings and derivations

Theorem 3.1 (Yamashita) Let $\mathfrak{C}, \mathfrak{D}$ be C^{∞} -rings, $\phi : \mathfrak{C} \to \mathfrak{D}$ a homomorphism of C^{∞} -rings and $k \in \mathbb{N} \cup \{\infty\}$. Suppose that \mathfrak{D} is point determined or k-jet determined.

Then any \mathbb{R} -derivation $V : \mathfrak{C} \to \mathfrak{D}$ over ϕ is a C^{∞} -derivation.

- Example 3.2 1. Let V be an \mathbb{R} -derivation $V : C^{\infty}(M) \to C^{\infty}(N)$ over the pull-back $f^* : C^{\infty}(M) \to C^{\infty}(N)$. $C^{\infty}(N)$ is a point determined C^{∞} -ring. From the previous theorem, this \mathbb{R} -derivation is a C^{∞} -derivation.
 - 2. $C^{\infty}(\mathbb{R})/\langle x^{k+1}\rangle_{C^{\infty}(\mathbb{R})}$ is not point determined but k-jet determined C^{∞} -ring. Any \mathbb{R} -derivation $V: C^{\infty}(\mathbb{R})/\langle x^{k+1}\rangle_{C^{\infty}(\mathbb{R})} \to C^{\infty}(\mathbb{R})/\langle x^{k+1}\rangle_{C^{\infty}(\mathbb{R})}$ is C^{∞} -derivation such that $V(f(x) + \langle x^{k+1} \rangle) = \frac{\partial f}{\partial x}(x)v(x) + \langle x^{k+1} \rangle$ by $v(x) + \langle x^{k+1} \rangle := V(x + \langle x^{k+1} \rangle).$

For the previous example, we have a following corollary by generalizing $C^{\infty}(\mathbb{R})/\langle x^{k+1}\rangle_{C^{\infty}(\mathbb{R})}$.

Corollary 3.1 (Yamashita) Let \mathfrak{C} be a k-jet determined C^{∞} -ring with the form $C^{\infty}(\mathbb{R}^n)/I$.

For any \mathbb{R} -derivation $V : \mathfrak{C} \to \mathfrak{C}$, V is a C^{∞} -derivation.

Moreover, there exists smooth functions $a_i(x) \in C^{\infty}(\mathbb{R}^n)$ such that

$$V(f(x)+I) = \sum_{i=1}^{n} a_i(x) \frac{\partial f}{\partial x_i}(x) + I \text{ for any } f(x) + I \in C^{\infty}(\mathbb{R}^n)/I.$$

4 Applications

Let \mathfrak{C} be a C^{∞} -ring and $\phi : \mathfrak{C} \to C^{\infty}(\mathbb{R})$ a homomorphism of C^{∞} -rings. This homomorphism is regarded as a C^{∞} -curve $\mathbb{R} \to Spec\mathfrak{C}$.

Suppose that $V : \mathfrak{C} \to C^{\infty}(\mathbb{R})$ is an \mathbb{R} -derivation over ϕ . For the previous theorem, this derivation V is a C^{∞} -derivation. Furthermore, C^{∞} -derivation V is regarded as a tangent vector at $Spec\mathfrak{C}$.

For any element $c' \in \mathfrak{C}$, we can define a homomorphism $\psi : \mathfrak{C} \ni c \mapsto \Phi_{\phi(c)}(c') \in \mathfrak{C}$ of C^{∞} -rings, and a C^{∞} -derivation $V' : \mathfrak{C} \ni c \mapsto \Phi_{V(c)}(c') \in \mathfrak{C}$ over ψ .

4.1 Applications to C^{∞} -vector field along C^{∞} -map

Let \mathfrak{C} be a C^{∞} -ring M a C^{∞} -manifold and $\phi : \mathfrak{C} \to C^{\infty}(M)$ a homomorphism of C^{∞} -rings.

Suppose that $V : \mathfrak{C} \to C^{\infty}(M)$ is an \mathbb{R} -derivation by ϕ . For the previous theorem, this derivation V is a C^{∞} -derivation.

Therefore, we can define a vector field $V : M \to Spec\mathfrak{C}$ over $Spec\phi : M \to Spec\mathfrak{C}$ as the image of derivation $\mathfrak{C} \to C^{\infty}(M)$ by the functor Spec.

参考文献

- [1] R. Hartshorne, algebraic geometry, Graduate texts in mathematics. 52, Springer-Verlag, New York, 1977
- [2] Dominic Joyce, Algebraic Geometry over C^{∞} -rings, arXiv:1001.0023, 2010
- [3] S. マックレーン著; 三好博之, 高木理訳, 圏論の基礎 (Categories for the working mathematician), シュプリンガー・ フェアラーク東京, 東京, 2005.7
- [4] I. Moerdijk and G.E. Reyes, Models for smooth infinitesimal analysis, Springer-Verlag, New York, 1991