On algebraic K-theory of quasi-coherent modules over spectral schemes

Mariko OHARA (Tohoku University)*

1. The main results

This is a summery of the consequence in [8]. More precise arguments or definitions, one can see [8].

1.1. The back ground

The algebraic K-theory is one of the important invariants of algebraic varieties. When we consider the Waldhousen construction of algebraic K-theory, we can find that the concept of a model category naturally appears and essentially plays an important role, so that we reach the concept of ∞ -category developed by Lurie. Since the underlying ∞ -categories of model categories are equivalent if the model categories are Quillen equivalent, we can regard the ∞ -category as a homotopy invariant of the model structures. Also, the G-structured ∞ -topoi, the concept of the spectral schemes and their quasi-coherent sheaves are the one of the main topic of algebraic topology which is developed by Lurie.

1.2. Settings

Let \mathcal{G}_{Zar}^{Sp} be the spectral Zariski geometry and $X \in \mathbf{Sch}(\mathcal{G}_{Zar}^{Sp})$ a spectral \mathcal{G}_{Zar}^{Sp} -scheme.

We study K-theory of spectral schemes by using quasi-coherent sheaves. we define K-theory of X by

$$K(X) = \Omega |S_{\bullet}(QCoh(X)^{lf})|,$$

where $QCoh(X)^{lf}$ is the ∞ -category of the locally free sheaves defined in [6].

Let CAlg^{cn} be an ∞ -category of connective \mathbb{E}_{∞} -rings and CAlg^{e} a ∞ -subcategory of CAlg^{cn} which consists of connective coherent \mathbb{E}_{∞} -rings and the morphisms with the following condition: $R_1 \to R_2$ is a morphism of connective \mathbb{E}_{∞} -rings which induces an exact functor $\operatorname{Mod}_{R_1}^{proj} \to \operatorname{Mod}_{R_2}^{proj}$. Note that any Zariski open immersion $R \to R[x^{-1}]$ for $x \in \pi_0 R$ induces an exact functor. Then we obtain the Zariski (resp. Nisnevich) ∞ -topos $\operatorname{Shv}_{\widehat{S}}(\operatorname{CAlg}^e)$ denoted by $\operatorname{CAlg}^{eZar}$ (resp. $\operatorname{CAlg}^{eNis}$).

Let R be a connective \mathbb{E}_{∞} -ring. We define a connective spectrum R^b to be the image of R under the morphism $\operatorname{Mod}_R \to \operatorname{Mod}_R^b$, where Mod_R^b is the ∞ -subcategory of Mod_R bounded by the *t*-structure. We call such a spectrum R^b bounded since it has only finitely non-zero homotopy groups. Note that $\operatorname{Mod}_{R^b}^{proj} \simeq (\operatorname{Mod}_R^{proj})^b$.

Let $\operatorname{CAlg}_{reg}^{b}$ be a ∞ -subcategory of CAlg^{cn} which consists of bounded coherent regular \mathbb{E}_{∞} -rings and the morphisms with the following condition: $R_{1}^{b} \to R_{2}^{b}$ is a morphism of connective \mathbb{E}_{∞} -rings such that the restriction of π_{0} makes $\pi_{0}R_{2}^{b}$ a finitely generated $\pi_{0}R_{1}^{b}$ -module. Those morphisms induces exact functors. Then we obtain the Zariski (resp. Nisnevich) ∞ -topos $Shv_{\widehat{S}}(\operatorname{CAlg}_{reg}^{b})$ denoted by $\operatorname{CAlg}_{reg}^{bZar}$ (resp. $\operatorname{CAlg}_{reg}^{bNis}$).

We define a functor

$$K: \mathrm{CAlg}^{eZar} \to \widehat{\mathbb{S}} \ (resp.\mathrm{CAlg}^{eNis} \to \widehat{\mathbb{S}})$$

which carries an \mathbb{E}_{∞} -ring A to the K-theory $K(\operatorname{Spec}^{g} A)$ defined above.

Let us denote the sheafification of K by \widetilde{K} .

^{*}e-mail: sa9m08@math.tohoku.ac.jp

1.3. The main theorem

We regard the K-theory as a functor K on the affine spectral schemes and prove that the group completion $\Omega B(BGL)$ represents the sheafification of K with respect to Zariski (resp. Nisnevich). Here, we define BGL to be a classifying space of a colimit of affine spectral scheme GL_n . We also prove $K(R^b) \simeq K(\pi_0 R^b)$ for the bounded connective spectrum R^b .

Theorem 1.1. Let BGL be a classifying space of a colimit of affine spectral scheme GL_n and $\Omega B(BGL)$ the group completion. Let CAlg^{e9} be either Zariski ∞ -topos $\operatorname{CAlg}^{eZar}$ or Nisnevich ∞ -topos $\operatorname{CAlg}^{eNis}$.

(i) There is an equivalence of ∞ -groupoids:

 $\operatorname{Map}_{\operatorname{Shv}_{\widehat{\alpha}}(\operatorname{CAlg}^{eg})}(\operatorname{Spec}^{g} R, \Omega B(BGL)) \simeq \widetilde{K}(\operatorname{Spec}^{g} R).$

(ii) $K(R^b) \simeq K(\pi_0 R)$ as a functor on $\operatorname{CAlg}_{reg}^{bZar}$ (resp. $\operatorname{CAlg}_{reg}^{bNis}$).

Let K^f : $\operatorname{CAlg}_{reg}^{bZar} \to \widehat{S}$ (resp. $\operatorname{CAlg}_{reg}^{bNis} \to \widehat{S}$) be a functor which carries an \mathbb{E}_{∞} -ring A to the K-theory KA of Elmendorf-Kriz-Mandell-May. Let us denote the sheafification of K^f by $\widehat{K^f}$. Then:

(iii) $\widehat{K^f}R^b \simeq K(R^b)$, and K is a sheaf on $\operatorname{CAlg}_{reg}^{bZar}$ (resp. $\operatorname{CAlg}_{reg}^{bNis}$).

1.4. Remarks

The sheafification makes no definence between objectwize group completion a functor $R \mapsto \Omega B(BGL(R))$ and the group completion of sheaf $R \mapsto (\Omega BBGL)(R)$.

The left hand side of Theorem 1.1(i) is equivalent to $K^f R$, so it gives a generalization of the consequence of Elmendorf-Kriz-Mandell-May [4, VI, Theorem 7.1] to the algebraic K-theory sheaf in certain ∞ -topos.

In bounded case, by combining Theorem 1.1(ii) and (iii), a functors K^f is characterized by π_0 -part of R^b .

2. Outline of the proof of Main results

In this section, we explain the outline of proof of Theorem 1.1(i). The key lemma is as follows.

Let R be an \mathbb{E}_{∞} -ring and $\operatorname{Mod}_{R}^{nproj}$ an ∞ -category of rank n projective R-modules in $\operatorname{Mod}_{R}^{cn}$. We defined spectral affine group scheme GL_{n} . We regard $BGL_{n}(R)$ is a ∞ -groupoid which consists of the single object R and equivalences as morphisms.

Lemma 2.1. Let $X : \operatorname{CAlg}_{\mathfrak{G}}^{cn} \to \widehat{\mathfrak{S}}$ be a spectral sheaf and $X \to BGL_n$ a morphism in $\operatorname{Shv}_{\widehat{\mathfrak{S}}}(\operatorname{CAlg}_{\mathfrak{G}}^{cn})$. Let $\operatorname{QCoh}(X)_n^{lf}$ be the ∞ -category of locally free sheaves of rank n. Then there is an equivalence of ∞ -groupoids;

$$\operatorname{Map}_{\operatorname{Shv}_{\widehat{\operatorname{c}}}(\operatorname{CAlg}_{\operatorname{c}}^{cn})}(X, BGL_n) \simeq \operatorname{QCoh}(X)_n^{lf}.$$

Proof. Roughly speaking, for each point $x \in X$ and sufficiently small open $x \in$ Spec^g $A \to X$, we assign the stalk of the morphism $X \to BGL_n$ at x to the finitely generated free A-module F(x). Then the sheaf condition gives a locally free sheaf Fand a one-to-one correspondence.

By [6, Proposition 2.7.14], the sheafification of the functor X with respect to Zariski or Nisnevich topology does not change the ∞ -category QCoh(X). The functor BGL_n is a hypercomplete sheaf with respect to those topology by [7, Theorem 6.1]. Therefore, it is sufficient to say that there is a one-to-one correspondence in Zariski case.

Now, we have $Mod_R^{nproj} \simeq \operatorname{QCoh}(\operatorname{Spec}{}^g R)_n^{lf}$. Take $M \in \operatorname{Mod}_R^{nproj}$. Then $\pi_0 M$ is a locally free $\pi_0 R$ -module of finite rank. We can choose elements $x_1, \dots, x_m \in \pi_0 R$ such that they generate the unit ideal and each localization $(\pi_0 M)[x_i^{-1}]$ is a free module over $(\pi_0 R)[x_i^{-1}]$ of finite rank. It follows that $M[x_i^{-1}]$ is a free module over $R[x_i^{-1}]$. Thus, M is free locally with respect to the Zariski topology on $\operatorname{Spec}{}^g R$ [6, Remark 2.7.30]. The lemma follows from the fact that, for a spectral sheaf X, $\operatorname{QCoh}(X)_n^{lf}$ is glued up by affine cover in the ∞ -topos $\operatorname{Shv}_{\widehat{\mathrm{g}}}(\operatorname{CAlg}_{\mathrm{g}}^{cn})$.

Proposition 2.2. Let BGL be a classifying space of colimit of affine spectral schemes GL_n and $\Omega B(BGL)$ the group completion. Let CAlg^{eg} be either the Zariski ∞ -topos $\operatorname{CAlg}^{eZar}$ or the Nisnevich ∞ -topos $\operatorname{CAlg}^{eNis}$. There is an equivalence of ∞ -groupoids:

 $\operatorname{Map}_{\operatorname{Shv}_{\widehat{\mathfrak{s}}}(\operatorname{CAlg}^{e_{\mathcal{G}}})}(\operatorname{Spec}{}^{g}R, \, \Omega B(BGL)) = \widetilde{K}(\operatorname{Spec}{}^{g}R).$

Proof. By [7, Lemma 3.21], we have an equivalence:

$$\operatorname{colim}_{n} \operatorname{Map}_{\operatorname{Shv}_{\widehat{S}}(\operatorname{CAlg}^{e\mathfrak{S}})}(\operatorname{Spec}^{g} R, BGL_{n}) \simeq \operatorname{Map}_{\operatorname{Shv}_{\widehat{S}}(\operatorname{CAlg}^{e\mathfrak{S}})}(\operatorname{Spec}^{g} R, BGL).$$

By Lemma 2.1, we have an equivalence

$$\Omega B(BGL(R)) \simeq \Omega B((\mathrm{Mod}_R^{proj})^{\simeq}),$$

where $(-)^{\simeq}$ denotes the maximal Kan complex. We can take the category of semi-finite R-modules. Since all w-cofibrations in $\operatorname{Mod}_R^{proj}$ is split and the homotopy category of $\operatorname{Mod}_R^{proj}$ is additive, by applying Waldhausen's additive K-theory to $\Omega B((\operatorname{Mod}_R^{proj})^{\simeq})$, we obtain that $\Omega B((\operatorname{Mod}_R^{proj})^{\simeq})$ is equivalent to the algebraic K-theory $K(\operatorname{Mod}_R^{proj}) = K(\operatorname{Spec}^g R)$ which is obtained by S_{\bullet} construction.

On the other hand, we have an equivalence induced by Yoneda embedding;

$$\operatorname{Map}_{\operatorname{Shv}_{\widehat{\mathbf{S}}}(\operatorname{CAlg}^{eg})}(\operatorname{Spec}^{g}R, \Omega B(BGL)) \simeq (\Omega BBGL)(R).$$

Consider the following commutative diagram of the ∞ -categories:

We have an equivalence $(\Omega BBGL)(R) \simeq \Omega B(BGL(R))$ if the objectwise group completion functor $R \mapsto \Omega B(BGL(R))$ is a spectral sheaf.

The space $\Omega B(BGL(R))$ has the same construction of the K-theory KR defined in [4] as a space by [4, Theorem 7.1].

References

- [1] C. Barwick and T. Lawson, Regularity of structured ring spectra and localization in K-theory, Preprint, available at arxiv:1402.6038v2 (2014).
- [2] A. Blumberg, D. Gepner, and G. Tabuada, A universal characterization of higher algebraic Ktheory, To appear in Geometry and Topology, available at arxiv:1001.2282v4 (2014).
- [3] J. Blumberg and A. Mandell, The localization sequence for the algebraic K-theory of topological K-theory, Acta Mathematica 200 (2008), 155–179.
- [4] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, *Rings, modules, and algebras in stable homotopy theory*, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR1417719 (97h:55006)
- [5] J. Lurie, *Higher algebra*, Preprint, available at www.math.harvard.edu/lurie (2011).
- [6] _____, Quasi-Coherent Sheaves and Tannaka Duality Theorems, Preprint, available at www.math.harvard.edu/lurie (2011).
- [7] _____, Spectral Schemes, Preprint, available at www.math.harvard.edu/lurie (2011).
- [8] M. Ohara, Algebraic K-theory of quasi-coherent modules over spectral schemes and the representation in affine case, Preprint, available at arxiv.org/abs/1411.2306 (2014).