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1. The main results
This is a summery of the consequence in [8]. More precise arguments or definitions,
one can see [8].

1.1. The back ground

The algebraic K-theory is one of the important invariants of algebraic varieties. When
we consider the Waldhousen construction of algebraic K-theory, we can find that the
concept of a model category naturally appears and essentially plays an important role,
so that we reach the concept of ∞-category developed by Lurie. Since the underlying
∞-categories of model categories are equivalent if the model categories are Quillen
equivalent, we can regard the ∞-category as a homotopy invariant of the model struc-
tures. Also, the G-structured ∞-topoi, the concept of the spectral schemes and their
quasi-coherent sheaves are the one of the main topic of algebraic topology which is
developed by Lurie.

1.2. Settings

Let GSp
Zar be the spectral Zariski geometry and X ∈ Sch(GSp

Zar) a spectral GSp
Zar-scheme.

We study K-theory of spectral schemes by using quasi-coherent sheaves. we define
K-theory of X by

K(X) = Ω|S•(QCoh(X)lf )|,

where QCoh(X)lf is the ∞-category of the locally free sheaves defined in [6].
Let CAlgcn be an ∞-category of connective E∞-rings and CAlge a ∞-subcategory

of CAlgcn which consists of connective coherent E∞-rings and the morphisms with the
following condition: R1 → R2 is a morphism of connective E∞-rings which induces an
exact functor Modproj

R1
→ Modproj

R2
. Note that any Zariski open immersion R → R[x−1]

for x ∈ π0R induces an exact functor. Then we obtain the Zariski (resp. Nisnevich)
∞-topos Shv

Ŝ
(CAlge) denoted by CAlgeZar (resp. CAlgeNis).

Let R be a connective E∞-ring. We define a connective spectrum Rb to be the
image of R under the morphism ModR → Modb

R, where Modb
R is the ∞-subcategory

of ModR bounded by the t-structure. We call such a spectrum Rb bounded since it has
only finitely non-zero homotopy groups. Note that Modproj

Rb ≃ (Modproj
R )b.

Let CAlgbreg be a ∞-subcategory of CAlgcn which consists of bounded coherent reg-
ular E∞-rings and the morphisms with the following condition: Rb

1 → Rb
2 is a morphism

of connective E∞-rings such that the restriction of π0 makes π0R
b
2 a finitely generated

π0R
b
1-module. Those morphisms induces exact functors. Then we obtain the Zariski

(resp. Nisnevich) ∞-topos Shv
Ŝ
(CAlgbreg) denoted by CAlgbZar

reg (resp. CAlgbNis
reg ).

We define a functor

K : CAlgeZar → Ŝ (resp.CAlgeNis → Ŝ)

which carries an E∞-ring A to the K-theory K(Spec gA) defined above.

Let us denote the sheafification of K by K̃.
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1.3. The main theorem

We regard the K-theory as a functor K on the affine spectral schemes and prove that
the group completion ΩB(BGL) represents the sheafification of K with respect to
Zariski (resp. Nisnevich). Here, we define BGL to be a classifying space of a colimit
of affine spectral scheme GLn. We also prove K(Rb) ≃ K(π0R

b) for the bounded
connective spectrum Rb.

Theorem 1.1. Let BGL be a classifying space of a colimit of affine spectral scheme
GLn and ΩB(BGL) the group completion. Let CAlgeG be either Zariski ∞-topos
CAlgeZar or Nisnevich ∞-topos CAlgeNis.

(i) There is an equivalence of ∞-groupoids:

MapShv
Ŝ
(CAlgeG)(Spec

gR, ΩB(BGL)) ≃ K̃(Spec gR).

(ii) K(Rb) ≃ K(π0R) as a functor on CAlgbZar
reg (resp. CAlgbNis

reg ).

Let Kf : CAlgbZar
reg → Ŝ (resp. CAlgbNis

reg → Ŝ) be a functor which carries an
E∞-ring A to the K-theory KA of Elmendorf-Kriz-Mandell-May. Let us denote the

sheafification of Kf by K̂f . Then:

(iii) K̂fRb ≃ K(Rb), and K is a sheaf on CAlgbZar
reg (resp. CAlgbNis

reg ).

1.4. Remarks

The sheafification makes no defference between objectwize group completion a functor
R 7→ ΩB(BGL(R)) and the group completion of sheaf R 7→ (ΩBBGL)(R).

The left hand side of Theorem 1.1(i) is equivalent to K̃fR, so it gives a generaliza-
tion of the consequence of Elmendorf-Kriz-Mandell-May [4, VI, Theorem 7.1] to the
algebraic K-theory sheaf in certain ∞-topos.

In bounded case, by combining Theorem 1.1(ii) and (iii), a functors Kf is charac-
terized by π0-part of R

b.

2. Outline of the proof of Main results
In this section, we explain the outline of proof of Theorem 1.1(i). The key lemma is as
follows.

Let R be an E∞-ring and Modnproj
R an ∞-category of rank n projective R-modules

in Modcn
R . We defined spectral affine group scheme GLn. We regard BGLn(R) is a

∞-groupoid which consists of the single object R and equivalences as morphisms.

Lemma 2.1. Let X : CAlgcnG → Ŝ be a spectral sheaf and X → BGLn a morphism
in Shv

Ŝ
(CAlgcnG ). Let QCoh(X)lfn be the ∞-category of locally free sheaves of rank n.

Then there is an equivalence of ∞-groupoids;

MapShv
Ŝ
(CAlgcnG )(X, BGLn) ≃ QCoh(X)lfn .

Proof. Roughly speaking, for each point x ∈ X and sufficiently small open x ∈
Spec gA → X, we assign the stalk of the morphism X → BGLn at x to the finitely
generated free A-module F (x). Then the sheaf condition gives a locally free sheaf F
and a one-to-one correspondence.

By [6, Proposition 2.7.14], the sheafification of the functor X with respect to Zariski
or Nisnevich topology does not change the ∞-category QCoh(X). The functor BGLn



is a hypercomplete sheaf with respect to those topology by [7, Theorem 6.1]. Therefore,
it is sufficient to say that there is a one-to-one correspondence in Zariski case.

Now, we have ModnprojR ≃ QCoh(Spec gR)lfn . Take M ∈ Modnproj
R . Then π0M is a

locally free π0R-module of finite rank. We can choose elements x1, · · · , xm ∈ π0R such
that they generate the unit ideal and each localization (π0M)[x−1

i ] is a free module over
(π0R)[x−1

i ] of finite rank. It follows that M [x−1
i ] is a free module over R[x−1

i ]. Thus,
M is free locally with respect to the Zariski topology on Spec gR [6, Remark 2.7.30].
The lemma follows from the fact that, for a spectral sheaf X, QCoh(X)lfn is glued up
by affine cover in the ∞-topos Shv

Ŝ
(CAlgcnG ).

Proposition 2.2. Let BGL be a classifying space of colimit of affine spectral schemes
GLn and ΩB(BGL) the group completion. Let CAlgeG be either the Zariski ∞-topos
CAlgeZar or the Nisnevich ∞-topos CAlgeNis. There is an equivalence of ∞-groupoids:

MapShv
Ŝ
(CAlgeG)(Spec

gR, ΩB(BGL)) = K̃(Spec gR).

Proof. By [7, Lemma 3.21], we have an equivalence:

colim
n

MapShv
Ŝ
(CAlgeG)(Spec

gR, BGLn) ≃ MapShv
Ŝ
(CAlgeG)(Spec

gR, BGL).

By Lemma 2.1, we have an equivalence

ΩB(BGL(R)) ≃ ΩB((Modproj
R )≃),

where (−)≃ denotes the maximal Kan complex. We can take the category of semi-finite
R-modules. Since all w-cofibrations in Modproj

R is split and the homotopy category of
Modproj

R is additive, by applying Waldhausen’s additive K-theory to ΩB((Modproj
R )≃),

we obtain that ΩB((Modproj
R )≃) is equivalent to the algebraic K-theory K(Modproj

R ) =
K(Spec gR) which is obtained by S• construction.

On the other hand, we have an equivalence induced by Yoneda embedding;

MapShv
Ŝ
(CAlgeG)(Spec

gR, ΩB(BGL)) ≃ (ΩBBGL)(R).

Consider the following commutative diagram of the ∞-categories:

P(CAlgeG)
ΩB //

(̃−)
��

P(CAlgeG)

(̃−)
��

Shv
Ŝ
(Shv(CAlgeG))

ΩB //Shv
Ŝ
(Shv(CAlgeG)).

We have an equivalence (ΩBBGL)(R) ≃ ΩB(BGL(R)) if the objectwise group com-
pletion functor R 7→ ΩB(BGL(R)) is a spectral sheaf.

The space ΩB(BGL(R)) has the same construction of the K-theory KR defined in
[4] as a space by [4, Theorem 7.1].
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