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Let Q be a bounded domain of RN (N > 1). By A, we denote the p-laplace operator
defined by
Ayu = div (|[Vul[P~2Vu) (0.1)

In this article, we shall study the strong maximum principle on the following quasilinear operator

A, +a@)Q(). 0.2)
Here 1 < p < 0o, N > 1, a € L) and Q(-) is a nonlinear term satisfying the following
properties:

[Qo] : Q(t) is a strictly increasing and continuous function such that Q(0) =0 and ¢- Q(¢) > 0
on R\ {0}.

Moreover we assume in Theorem 1

Qu] :
Q)]

lim sup -1

[t|—0

< 00. (0.3)

Now let us recall some relating known results on the strong maximum principle assuming
that Q(t) = [t|P~2t for simplicity. The classical strong maximum principle for a Laplacian
asserts that if u is smooth, u > 0 and —Aw > 0 in a domain (a connected open set ) Q C RV,
then either v = 0 or w > 0 in . The same conclusion holds when —Auw is replaced by
—A + a(x) with a € L*(Q),s > N/2. Later these results were extended to the quasilinear
operators —A,u + a(z)uP~! with 1 < p < oo, a € L*(2),s > N/p. These are consequences of
a weak Harnack’s inequality. See [ ........ ] and [... | for p=2and [ ... | for p > 1. Another
formulation of the same fact says that if u(x) = 0 for some point = € €, then u =0 in Q.

However a similar conclusion does not hold when a ¢ L®, for any s > N/p.

Example 1. Let By be a unit ball in RN with a center being 0 and

u=lz|*a>(p-N+1)/(p-1),
a(x) = ce(p, a)|z| 7P, (0.4)
c(p,a)=aP Hap—a—p+ N —1).

Then we see 0 < a ¢ LN/P(By) and —Apu+ a(x)uP~' =0 in By. Clearly u(0) = 0 but u #0
mn Bl.

If w vanishes on a larger set, one may conclude that « = 0 under some weaker condition on
a. When p = 2, such a result was obtained by Bénilan-Brezis [] in the case where a € L!({2)
and suppw is a compact subset of 2. This maximum principle has been further extended by
Ancona []. Later a more direct proof was given by Brezis - Ponce [] in the split of PDE’s.

In the present paper we further study the case where p € (1,00) adopting a nonlinearlity
Q(t) in stead of [t[P7%t. Now we describe our main result:



Theorem 1. Let N > 1,1 < p < 0o and p* = max(0,p — 1). Let Q be a bounded domain of
RY. Let u be a measurable function on Q, u > 0 a.e. in Q such that u € L*(Q), Q(u) € LY(Q),

[Vu| € Lf;c(ﬂ) and Apu is a Radon measure on Q0. Then we have the followings:

1. There exists u : 2 — R quasicontinuous such that u = % a.e. in ).

2. Leta € LY(Q),a >0 a.e. in Q. If
—Apu+a(x)Q(u) >0 in £, (0.5)

in the following sense
/ Apudr < / aQ(u)dx  for every Borel set E C Q, (0.6)
E E

and if u = 0 on a set of positive p-capacity in 2, then u =0 a.e. in Q.

Remark 0.1. 1. In the section 2 the definitions of quasicontinuity and p-capacity denoted
by Cp(E, Q) are given together with their fundamental properties.

2. In (0.4), u=|z|* satisfies —Apu+ a(x)uP~r =0 in By. If p> N, then C,({0}, B1) >0
holds. But we note that a ¢ L'(B).

Remark 0.2. Let us set Q(t) = [t|77%t for ¢ > 1 which clearly satisfies [Qo]. Then the
condition [Q1] is satisfied if and only if ¢ > p. In this case Example 2 below shows the necessity
of the condition [Q1].

In order to study the necessity of the condition [Qq] in Theorem, let us introduce another
condition [Qz].

[Qz2]: There exists a ¢ € (1, p) such that we have

lim inf Q)]
A

>0 (0.7)

Then we have the following.

Example 2. We assume that Q2 = By, the conditions [Qo] and [Qz], and we fix a nonnegative
integer m < N — 1.
Let My = {0} and let M,,, C RN for m > 0 be an m dimensional linear subspace defined
by
M ={y = (y1.92,- -, yn) ERY 1y = Y2 = - yn = 0}, (0.8)

and we put K,y = My, N Byjo. , Let us set

dm(x) = dist(z, M,,) =

Then clearly d, € C®°(RN \ M,,) and |Vd,(x)| = 1 in RN \ M,,. Now we construct a
null solution U for (0.2) in By of the form

U(z) = dm(x)” (0.10)
as before. By a direct calculation we have

—AU +a(x)QU) =0 in By, (0.11)



where
AU et

a(r) = = aP~1 o — _ a(p—q)—p.
(1) = S = s (dy + (0= o — D)

Here we note that
d(2)Adp () = N —m — 1. (0.12)

By virtue of [Qz] we have for a sufficiently large o > 0
0 < a(z) < Cdp (z)*P~D7P € LY(By),  for some positive constant C.

Clearly U =0 on K, C My, and U £ 0.

Now we choose a nonnegative interger m so that m > N — p.

Then it follows from Lemma 1(2) that Cp(Ky,, B1) > 0 provided that 1 <p < N. Ifp > N,
then we set m = 0 and Ko = Mo = {0} so that we have Cp({0}, B1) > 0. Lastly we assume
1 <p=N. Again it follows from Lemma 1(2) that we have Cn_, (K1, B1) > 0 for a sufficiently
small n > 0. Hence Cn (K1, B1) > 0 by a Holder inequality.

Lemma 1. Let p satisfy 1 < p < N and let E be a compactum in By.
1. Assume that Hy_pye(E) > 0 for some e > 0. Then C,(E,By) > 0.

2. Assume that a nonnegative integer m satisfies N —p < m (< N —1). Then Cp(Kp,, B1) >
0,where K, = My, N Byjs.

Here by Hy(E) for 0 <d < N we denote a d-dimensional Hausdor[f measure.

Proof: The assertion 1 is a fundamental property of capacity. For instance see [ ; Proposition
3.1].

Since dim M,,, = m, we see Hy_p+o(K,,) > 0 for a sufficiently small ¢ > 0. Hence the
assertion 2 is a direct consequence of the previous one. O

Then we have the following.

Proposition 0.1. Let us set Q(t) = |t|972t for 1 < q. Then, in the hypotheses of theorem 1
the condition [Q1] is necessary.

Proof: If 1 < g < p, then Q satisfies [Q2] and we already have the counter-examples. (I

Definition 0.1. Definitions of Wl’p(Q) and WP(Q) and p — capacity.

loc
L}, .(Q)-functions are an important class of distributions,but we can usefully refine that class
by studying functions whose distributeonal derivatives are also L} (Q)-function. This class is

loc
denoted by W (Q). Furthermore,just as LY. (Q) is related to L1 (Q) we can also define the

loc loc loc

class of functions VVﬁ)f(Q) for each 1 < p < oco. Thus,

WhP ={f:Q—C:felLf (Q) and d;f, as a distribution in D’'(),

loc loc
is an LY (Q)-fuction fori=1,...,n}.

Definition 0.2. The p-capacity of a compact set ¥ C ) is defined as

Cp(2,Q) = mf{/ | Vi [P p € C5°(Q),¢ > 1 in some neightborhood of ¥}.
Q



Definition 0.3. In this paper we shall consider the operators defined by

Ly(u) = Ay (u) = div(] Vu [P~ Vu)

Definition 0.4. We recall that a function v: Q@ — R is quasicontinuous if there exists a
sequence of open subsets (wy,) of 0 such that v o\, s continuous Vn > 1 and capw, — 0 as
n — oo, where cap w, denotes the H' — capacity of wy,.
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