Remarks on the strong maximum principle involving p-Laplacian

Xiaojing Liu, Toshio Horiuchi

January 7, 2015

Let Ω be a bounded domain of $\mathbf{R}^{\mathbf{N}}$ $(N \geq 1)$. By Δ_p we denote the *p*-laplace operator defined by

$$\Delta_p u = \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \tag{0.1}$$

In this article, we shall study the strong maximum principle on the following quasilinear operator

$$-\Delta_p + a(x)Q(\cdot). \tag{0.2}$$

Here $1 , <math>N \ge 1$, $a \in L^1(\Omega)$ and $Q(\cdot)$ is a nonlinear term satisfying the following properties:

 $[\mathbf{Q}_0]$: Q(t) is a strictly increasing and continuous function such that Q(0) = 0 and $t \cdot Q(t) > 0$ on $\mathbf{R} \setminus \{0\}$.

Moreover we assume in Theorem 1

 $[\mathbf{Q_1}]$:

$$\limsup_{|t| \to 0} \frac{|Q(t)|}{|t|^{p-1}} < \infty.$$
(0.3)

Now let us recall some relating known results on the strong maximum principle assuming that $Q(t) = |t|^{p-2}t$ for simplicity. The classical strong maximum principle for a Laplacian asserts that if u is smooth, $u \ge 0$ and $-\Delta u \ge 0$ in a domain (a connected open set) $\Omega \subset \mathbf{R}^N$, then either $u \equiv 0$ or u > 0 in Ω . The same conclusion holds when $-\Delta u$ is replaced by $-\Delta + a(x)$ with $a \in L^s(\Omega), s > N/2$. Later these results were extended to the quasilinear operators $-\Delta_p u + a(x)u^{p-1}$ with $1 , <math>a \in L^s(\Omega), s > N/p$. These are consequences of a weak Harnack's inequality. See [......] and [...] for p = 2 and [...] for p > 1. Another formulation of the same fact says that if u(x) = 0 for some point $x \in \Omega$, then $u \equiv 0$ in Ω .

However a similar conclusion does not hold when $a \notin L^s$, for any s > N/p.

Example 1. Let B_1 be a unit ball in \mathbf{R}^N with a center being 0 and

$$\begin{cases} u = |x|^{\alpha}, \alpha > (p - N + 1)/(p - 1), \\ a(x) = c(p, \alpha)|x|^{-p}, \\ c(p, \alpha) = \alpha^{p-1}(\alpha p - \alpha - p + N - 1). \end{cases}$$
(0.4)

Then we see $0 \le a \notin L^{N/p}(B_1)$ and $-\Delta_p u + a(x)u^{p-1} = 0$ in B_1 . Clearly u(0) = 0 but $u \not\equiv 0$ in B_1 .

If u vanishes on a larger set, one may conclude that $u \equiv 0$ under some weaker condition on a. When p = 2, such a result was obtained by Bénilan-Brezis [] in the case where $a \in L^1(\Omega)$ and supp u is a compact subset of Ω . This maximum principle has been further extended by Ancona []. Later a more direct proof was given by Brezis - Ponce [] in the split of PDE's.

In the present paper we further study the case where $p \in (1, \infty)$ adopting a nonlinearlity Q(t) in stead of $|t|^{p-2}t$. Now we describe our main result:

Theorem 1. Let $N \ge 1$, $1 and <math>p^* = \max(0, p - 1)$. Let Ω be a bounded domain of \mathbf{R}^N . Let u be a measurable function on Ω , $u \ge 0$ a.e. in Ω such that $u \in L^1(\Omega)$, $Q(u) \in L^1(\Omega)$, $|\nabla u| \in L_{loc}^{p^*}(\Omega)$ and $\Delta_p u$ is a Radon measure on Ω . Then we have the followings:

- 1. There exists $\tilde{u}: \Omega \mapsto \mathbf{R}$ quasicontinuous such that $u = \tilde{u}$ a.e. in Ω .
- 2. Let $a \in L^1(\Omega), a \ge 0$ a.e. in Ω . If

$$-\Delta_p u + a(x)Q(u) \ge 0 \text{ in } \Omega, \tag{0.5}$$

in the following sense

$$\int_{E} \Delta_{p} u \, dx \le \int_{E} aQ(u) \, dx \quad \text{for every Borel set } E \subset \Omega, \tag{0.6}$$

and if $\tilde{u} = 0$ on a set of positive p-capacity in Ω , then u = 0 a.e. in Ω .

- **Remark 0.1.** 1. In the section 2 the definitions of quasicontinuity and p-capacity denoted by $C_p(E, \Omega)$ are given together with their fundamental properties.
 - 2. In (0.4), $u = |x|^{\alpha}$ satisfies $-\Delta_p u + a(x)u^{p-1} = 0$ in B_1 . If p > N, then $C_p(\{0\}, B_1) > 0$ holds. But we note that $a \notin L^1(B_1)$.

Remark 0.2. Let us set $Q(t) = |t|^{q-2}t$ for q > 1 which clearly satisfies $[\mathbf{Q}_0]$. Then the condition $[\mathbf{Q}_1]$ is satisfied if and only if $q \ge p$. In this case Example 2 below shows the necessity of the condition $[\mathbf{Q}_1]$.

In order to study the necessity of the condition $[\mathbf{Q}_1]$ in Theorem, let us introduce another condition $[\mathbf{Q}_2]$.

 $[\mathbf{Q}_2]$: There exists a $q \in (1, p)$ such that we have

$$\liminf_{|t| \to 0} \frac{|Q(t)|}{|t|^{q-1}} > 0 \tag{0.7}$$

Then we have the following.

Example 2. We assume that $\Omega = B_1$, the conditions $[\mathbf{Q}_0]$ and $[\mathbf{Q}_2]$, and we fix a nonnegative integer $m \leq N - 1$.

Let $\mathcal{M}_0 = \{0\}$ and let $\mathcal{M}_m \subset \mathbf{R}^N$ for m > 0 be an m dimensional linear subspace defined by

$$\mathcal{M}_m = \{ y = (y_1, y_2, \dots, y_N) \in \mathbf{R}^N : y_{m+1} = y_{m+2} = \dots y_N = 0 \},$$
(0.8)

and we put $K_m = \mathcal{M}_m \cap \overline{B_{1/2}}$. , Let us set

$$d_m(x) = dist(x, \mathcal{M}_m) \equiv \sqrt{\sum_{k=m+1}^N x_k^2}.$$
(0.9)

Then clearly $d_m \in C^{\infty}(\mathbf{R}^N \setminus \mathcal{M}_m)$ and $|\nabla d_m(x)| = 1$ in $\mathbf{R}^N \setminus \mathcal{M}_m$. Now we construct a null solution U for (0.2) in B_1 of the form

$$U(x) = d_m(x)^{\alpha} \tag{0.10}$$

as before. By a direct calculation we have

$$-\Delta_p U + a(x)Q(U) = 0 \quad in \ B_1, \tag{0.11}$$

where

$$a(x) = \frac{\Delta_p U}{Q(U)} = \frac{U^{q-1}}{Q(U)} \alpha^{p-1} (d_m \Delta d_m + (\alpha - 1)(p-1)) d_m^{\alpha(p-q)-p}.$$

Here we note that

$$d_m(x)\Delta d_m(x) = N - m - 1.$$
(0.12)

By virtue of $[\mathbf{Q}_2]$ we have for a sufficiently large $\alpha > 0$

 $0 \le a(x) \le Cd_m(x)^{\alpha(p-q)-p} \in L^1(B_1),$ for some positive constant C.

Clearly U = 0 on $K_m \subset \mathcal{M}_m$ and $U \not\equiv 0$.

Now we choose a nonnegative interger m so that m > N - p.

Then it follows from Lemma 1(2) that $C_p(K_m, B_1) > 0$ provided that 1 . If <math>p > N, then we set m = 0 and $K_0 = \mathcal{M}_0 = \{0\}$ so that we have $C_p(\{0\}, B_1) > 0$. Lastly we assume $1 . Again it follows from Lemma 1(2) that we have <math>C_{N-\eta}(K_1, B_1) > 0$ for a sufficiently small $\eta > 0$. Hence $C_N(K_1, B_1) > 0$ by a Hölder inequality.

Lemma 1. Let p satisfy 1 and let <math>E be a compactum in B_1 .

- 1. Assume that $H_{N-p+\varepsilon}(E) > 0$ for some $\varepsilon > 0$. Then $C_p(E, B_1) > 0$.
- 2. Assume that a nonnegative integer m satisfies $N p < m (\leq N 1)$. Then $C_p(K_m, B_1) > 0$, where $K_m = \mathcal{M}_m \cap \overline{B_{1/2}}$.

Here by $H_d(E)$ for $0 \le d \le N$ we denote a d-dimensional Hausdorff measure.

Proof: The assertion 1 is a fundamental property of capacity. For instance see [; Proposition 3.1].

Since dim $\mathcal{M}_m = m$, we see $H_{N-p+\varepsilon}(K_m) > 0$ for a sufficiently small $\varepsilon > 0$. Hence the assertion 2 is a direct consequence of the previous one.

Then we have the following.

Proposition 0.1. Let us set $Q(t) = |t|^{q-2}t$ for 1 < q. Then, in the hypotheses of theorem 1 the condition $[\mathbf{Q}_1]$ is necessary.

Proof: If 1 < q < p, then Q satisfies $[\mathbf{Q}_2]$ and we already have the counter-examples.

Definition 0.1. Definitions of $W_{loc}^{1,p}(\Omega)$ and $W^{1,p}(\Omega)$ and p-capacity.

 $L^{1}_{loc}(\Omega)$ -functions are an important class of distributions, but we can usefully refine that class by studying functions whose distributeonal derivatives are also $L^{1}_{loc}(\Omega)$ -function. This class is denoted by $W^{1,1}_{loc}(\Omega)$. Furthermore, just as $L^{p}_{loc}(\Omega)$ is related to $L^{1}_{loc}(\Omega)$ we can also define the class of functions $W^{1,p}_{loc}(\Omega)$ for each $1 \leq p \leq \infty$. Thus,

 $W_{loc}^{1,p} = \{f: \Omega \to C: f \in L_{loc}^{p}(\Omega) \text{ and } \partial_{i}f, \text{ as a distribution in } D'(\Omega), \\ \text{ is an } L_{loc}^{p}(\Omega)\text{-fuction for } i = 1, ..., n\}.$

Definition 0.2. The p-capacity of a compact set $\Sigma \subset \Omega$ is defined as

$$C_p(\Sigma, \Omega) = \inf\{ \int_{\Omega} \mid \nabla \varphi \mid^p : \varphi \in C_0^{\infty}(\Omega), \varphi \ge 1 \text{ in some neightborhood of } \Sigma \}.$$

Definition 0.3. In this paper we shall consider the operators defined by

$$L_p(u) = \Delta_p(u) = div(|\nabla u|^{p-2} \nabla u)$$

Definition 0.4. We recall that a function $v: \Omega \to \mathbf{R}$ is quasicontinuous if there exists a sequence of open subsets (ω_n) of Ω such that $v \mid_{\Omega \setminus \omega_n}$ is continuous $\forall n \ge 1$ and $cap\omega_n \to 0$ as $n \to \infty$, where $cap \omega_n$ denotes the H^1 – capacity of ω_n .

Bibliography

A.Ancona[1], Une *propriété* d'invariance des ensembles absorbants par perturbation d'un $op\acute{e} - rateur$ elliptique, Comm.PDE4(1979), p321-337.

P.Bénilan and H.Brezis[1],,Nonlinear problems related to the Thomas-Fermi equation, to appear.

J.Deny[1], *Théorie* de la *capacité* dans les espaces fonctionnels, *Séminaire* de *Théorie* du Potentiel, *dirigé* par M.Brelot, G. Choquet et J.Deny; $9^{\acute{eme}}ann\acute{e}e$, 1964/65, $n^{\circ}1$

T.Kato[1], Schrödinger operators with singular potentials.Israel J.Math.13(1972),p135-148.

H.Lewy and G.Stampacchia[1], On the regularity of the solution of a variational inequality, Comm.Pure Appl.Math.22(1969),153-188.

G.Stampacchia[1], "Équations elliptiques du second ordre \dot{a} coefficients discontinus", Les Presses de l'Universit \dot{e} de Montr \dot{e} al, Montr \dot{e} al, 1966.

N.Trudinger[1], Linear elliptic operators with measurable coefficients, Ann. Scuola Norm.Sup. Pisa27(1973),p265-308.

Elliott H. Lieb and Michael Loss, Analysis, 1997, p132.

Louis Dupaigne and Augusto C.Ponce, Singularities of Positive Supersolutions in Elliptic PDEs,2-Some remarks about the p-capacity.

HAÏM BREZIS AND AUGUSTO C. PONCE, Remarks on the strong maximum principle.

NEIL S,TRUDIGER, linear elliptic operators with measurable coefficients (1973)p265-308.

GUIDO STAMPACCHIA, Le probl*é*me de Dirichlet pour les *é*quations elliptiques du second ordre à coefficients discontinus(1965)p189-257.