Singularities of projections of surfaces in \mathbb{R}^4

Jorge Luiz Deolindo Silva

Abstract: We study the geometry of surfaces in \mathbb{R}^4 associated to contact with hyperplanes, planes and lines. In particular, we show the existence of multi-local robust feature of surface. These are smooth curves representing the various types of multi-local singularities.

1 Introduction

In this work we study the generic geometry of surfaces in \mathbb{R}^4 associated to its contact with hyperplanes, planes and lines. This contact is captured by the local and multi-local singularities of the height function and the orthogonal projection to 2,3-spaces. There are several results about the subject, see for exemple [1, 2, 4, 6]. We show the existence of multi-local robust features of the surface.

Given M be a regular surface in Euclidean space \mathbb{R}^4. Given a point $p \in M$ consider the unit circle in $T_p M$ parametrized by $\theta \in [0,2\pi]$. The set of the curvature vectors $\eta(\theta)$ of the normal sections of M by the hyperplane $\langle \theta \rangle \oplus N_p M$ form an ellipse in the normal plane $N_p M$ to M at p, called the curvature ellipse ([4]).

The curvature ellipse is the image of the unit circle in $T_p M$ by a map formed by a pair of quadratic forms (Q_1,Q_2). This pair of quadratic forms is the 2-jet of the 1-flat map $F : \mathbb{R}^2,0 \to \mathbb{R}^2,0$ whose graph, in orthogonal co-ordinates, is locally the surface M.

The flat geometry of surfaces is affine invariant. A different approach to the geometry of surfaces in \mathbb{R}^4 is given in [1]. This is via the pencil of the binary forms determined by the pair (Q_1,Q_2). Each point on the surface determines a pair of quadratics: $(Q_1,Q_2) = (ax^2 + 2bxy + cy^2, lx^2 + 2mxy + ny^2)$.

If the forms Q_1 and Q_2 are independent, then we have the invariant

$$\delta(p) = (an - cl)^2 - 4(am - bl)(bn - cm).$$

A point p is said to be elliptic/parabolic/hyperbolic if $\delta(p) < 0/ = 0/ > 0$. The set of points in M where $\delta = 0$ is called the parabolic set of M and is denoted by Δ.

If Q_1 and Q_2 are dependent in a point p, the point is called inflection point.

The geometrical characterization of points on M using singularity theory is first carried out in [6] via the family height function.

Definition 1.1 The family of height functions is defined by

$$h : M \times S^3 \to \mathbb{R}$$

$$\langle p,v \rangle \mapsto h(p,v) = \langle p,v \rangle$$

where S^3 denotes the unit sphere in \mathbb{R}^4.
The height function h_v (v fix) is singular at p if and only if $v \in N_pM$. It is shown in [6] that elliptic points are non-degenerate critical points of h_v for any $v \in N_pM$. At a hyperbolic point, there are exactly two directions in N_pM, labeled \textit{binormal directions}, such that p is a degenerate critical point of the corresponding height functions. The two binormal directions coincide at a parabolic point. The set of the A_3 singularities of the height function is a smooth curve in M (A_3-curve) and the singularity A_4 of the height function occurs isolated on the A_3-curve [6].

The direction of the kernel of the Hessian of the height functions along a binormal direction is an \textit{asymptotic direction} associated to the given binormal direction ([6]). If p is not an inflection point, there are $2/1/0$ asymptotic directions at p depending on p being a hyperbolic/parabolic/elliptic point.

Definition 1.2

The family of \textit{orthogonal projections} is given by

$$P : M \times S^3 \rightarrow TS^3$$

$$(p, v) \mapsto (v, p - \langle p, v \rangle v).$$

For v fixed, the projection can be viewed locally at a point $p \in M$ as a map germ $P_v : \mathbb{R}^2, 0 \rightarrow \mathbb{R}^3, 0$. If we allow smooth changes of coordinates in the source and target (i.e. consider the action of the Mather group A) then the generic A-singularities of P_v are those that have A-codimension less than or equal to 3 (which is the dimension of S^3). These are listed in [7].

The projection P_v is singular at p if and only if $v \in T_pM$. The singularity is a cross-cap unless v is an asymptotic direction at p. The codimension 2 singularities occur generically on curves on the surface and the codimension 3 ones at special points on these curves. The H_2-curve coincides with the Δ-set ([1]). The B_2-curve of P_v, with v asymptotic, is also the A_3-set of the height function along the binormal direction associated to v ([1]). This curve meets the Δ-set tangentially at isolated points ([2]) and intersects the S_2-curve transversally at a C_3-singularity. At inflection points the Δ-set has a Morse singularity and the configuration of the B_2 and S_2-curves there is given in [1].

In [5], carried out a study using the family orthogonal projections in planes.

Definition 1.3

The \textit{orthogonal projections to planes} is given by

$$\Pi : M \times G(2, 4) \rightarrow \mathbb{R}^2$$

$$(p, v) \mapsto \Pi(p, v) = (\langle p, a \rangle, \langle p, b \rangle),$$

where $G(2, 4)$ is the Grassmanian of 2-planes in \mathbb{R}^4 and, a and b are unit vectors linearly independent generating the plane $v \in G(2, 4)$.

The family projections in planes can be seen to 4-parameters and, moreover, fixed v is locally in $p \in M$ a germ of a map $\Pi_v : \mathbb{R}^2, 0 \rightarrow \mathbb{R}^2, 0$ which give that contact between M and the plane which is the orthogonal complement of plane v. The generic A-singularities of that germs are those in [8].

Π_v is singular at $p \in M$, if only if, the intersection of the tangent plane to M at p with the orthogonal complement of the plane v, denoted by v^\perp, is different of zero, i.e., there is a tangent vector not null $u \in T_pM$ such that $u \in v^\perp$. The singularities of corank 2 correspond to normal planes to surface. For singularities of corank 1, at hyperbolic (resp.}

parabolic) points there are two (resp. one) degenerate planes whose projection is of type \(4_2\) (or worse) and at elliptic points there is only transversal singularities to \(\Sigma_1\). \((\Sigma_1\) is the set of singular points with corank 1). On the plane of degenerate projection \(v\) chosen a direction in this plane, the \(A_2\)-set of the height function coincides with the \(4_2\)-set of \(\Pi_v\).

2 The multi-local curves and their applications

We are seeking the loci of points in \(M\) where \(h_v, P_v\) has a multi-local singularity of \(A_e\)-codimension \(\leq 2\).

Theorem 1 In the family the height function \(h_v\). The \(A_3\)-curve and the \(A_1A_2\)-curve are generically tangential at \(A_4\) with contact of order 2.

![Figure 1: multi-local curves in \(M\) away of the inflection points](image)

Theorem 2 In family of the orthogonal projection \(P_v\). For a generic surface \(M\) embedded in \(\mathbb{R}^4\), the multi-local singularities of \(P_v\) of codimension 2 that are adjacent to local singularities occur only at codimension 3 local singularities of \(P_v\).

(i) At a \(B_3\)-singularity of \(P_v\), there is an \([A_2]\)-curve which meets the \(B_2\)-curve transversally;

(ii) At an \(S_3\)-singularity of \(P_v\), there are no codimension 2 multi-local singularities;

(iii) At a \(C_3\)-singularity of \(P_v\), there are no codimension 2 multi-local singularities;

(iv) At an \(H_3\)-singularity of \(P_v\), there is an \((A_0S_0)_2\)-curve which meets the \(\Delta\)-set tangentially;

(v) At a \(P_3(c)\)-singularity of \(P_v\), there are the curves \(A_0S_1, (A_0S_0)_2\) and \(A_0S_0|A_1^\perp\) which meets the \(\Delta\)-set tangentially.

All the tangential are generically of order 2, (see Figure 2). Where \([A_2]\), \((A_0S_0)_2\), \(A_0S_1\) and \(A_0S_0|A_1^\perp\) are bigerms the \(A_e\)-codimension 2 classified in [3].

Proposition 2.1 At a point \(P_3(c)\), the surface is projectively equivalent to \((x, y, f_1(x, y), f_2(x, y))\), where

\[
j^4(f_1(x, y), f_2(x, y)) = (x^2 + xy^2 + \alpha y^4, xy + \beta y^3 + \phi_4).
\]
We denote tangents at $P_3(c)$ to the Legendrian lifts of the parabolic, B_2, $(A_0S_0)_2$, A_0S_1 and $A_0S_2|A_1^\pm$ curves by l_P, l_b, l_{s_0}, l_{s_1}, and l_{s_2}, respectively. We denote by l_g the contact element to the point $P_3(c)$ (the vertical line in the contact plane at that point).

Theorem 3 At a generic point $P_3(c)$, two cross-ratios can permit recover the projective invariants α and β of surface.

References

