Singularities of projections of surfaces in \mathbb{R}^{4}

Jorge Luiz Deolindo Silva

Abstract

We study the geometry of surfaces in \mathbb{R}^{4} associated to contact with hyperplanes, planes and lines. In particular, we show the existence of multi-local robust feature of surface. These are smooth curves representing the various types of multi-local singularities.

1 Introduction

In this work we study the generic geometry of surfaces in \mathbb{R}^{4} associated to its contact with hyperplanes, planes and lines. This contact is captured by the local and multi-local singularities of the height function and the orthogonal projection to 2,3 -spaces. There are several results about the subject, see for exemple $[1,2,4,6]$. We show the existence of multi-local robust features of the surface.

Given M be a regular surface in Euclidean space \mathbb{R}^{4}. Given a point $p \in M$ consider the unit circle in $T_{p} M$ parametrized by $\theta \in[0,2 \pi]$. The set of the curvature vectors $\eta(\theta)$ of the normal sections of M by the hyperplane $\langle\theta\rangle \oplus N_{p} M$ form an ellipse in the normal plane $N_{p} M$ to M at p, called the curvature ellipse ([4]).

The curvature ellipse is the image of the unit circle in $T_{p} M$ by a map formed by a pair of quadratic forms (Q_{1}, Q_{2}). This pair of quadratic forms is the 2-jet of the 1-flat map $F: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{2}, 0$ whose graph, in orthogonal co-ordinates, is locally the surface M.

The flat geometry of surfaces is affine invariant. A different approach to the geometry of surfaces in \mathbb{R}^{4} is given in [1]. This is via the pencil of the binary forms determined by the pair $\left(Q_{1}, Q_{2}\right)$. Each point on the surface determines a pair of quadratics: $\left(Q_{1}, Q_{2}\right)=$ $\left(a x^{2}+2 b x y+c y^{2}, l x^{2}+2 m x y+n y^{2}\right)$.

If the forms Q_{1} and Q_{2} are independent, then we have the invariant

$$
\delta(p)=(a n-c l)^{2}-4(a m-b l)(b n-c m) .
$$

A point p is said to be elliptic/parabolic/hyperbolic if $\delta(p)<0 /=0 />0$. The set of points in M where $\delta=0$ is called the parabolic set of M and is denoted by Δ.

If Q_{1} and Q_{2} are dependent in a point p, the point is called inflection point.
The geometrical characterization of points on M using singularity theory is first carried out in [6] via the family height function.

Definition 1.1 The family of height functions is defined by

$$
\begin{aligned}
h: M \times S^{3} & \rightarrow \mathbb{R} \\
(p, v) & \mapsto h(p, v)=\langle p, v\rangle
\end{aligned}
$$

where S^{3} denotes the unit sphere in \mathbb{R}^{4}.

The height function h_{v} (v fix) is singular at p if and only if $v \in N_{p} M$. It is shown in [6] that elliptic points are non-degenerate critical points of h_{v} for any $v \in N_{p} M$. At a hyperbolic point, there are exactly two directions in $N_{p} M$, labeled binormal directions, such that p is a degenerate critical point of the corresponding height functions. The two binormal directions coincide at a parabolic point. The set of the A_{3} singularities of the height function is a smooth curve in M (A_{3}-curve) and the singularity A_{4} of the height function occurs isolated on the A_{3}-curve [6].

The direction of the kernel of the Hessian of the height functions along a binormal direction is an asymptotic direction associated to the given binormal direction ([6]). If p is not an inflection point, there are $2 / 1 / 0$ asymptotic directions at p depending on p being a hyperbolic/parabolic/elliptic point.

Definition 1.2 The family of orthogonal projections is given by

$$
\begin{aligned}
P: M \times S^{3} & \rightarrow T S^{3} \\
(p, v) & \mapsto(v, p-\langle p, v\rangle v)
\end{aligned}
$$

For v fixed, the projection can be viewed locally at a point $p \in M$ as a map germ $P_{v}: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{3}, 0$. If we allow smooth changes of coordinates in the source and target (i.e. consider the action of the Mather group \mathcal{A}) then the generic \mathcal{A}-singularities of P_{v} are those that have \mathcal{A}-codimension less than or iqual to 3 (which is the dimension of S^{3}). These are listed in [7].

The projection P_{v} is singular at p if and only if $v \in T_{p} M$. The singularity is a cross-cap unless v is an asymptotic direction at p. The codimension 2 singularities occur generically on curves on the surface and the codimension 3 ones at special points on these curves. The H_{2}-curve coincides with the Δ-set ([1]). The B_{2}-curve of P_{v}, with v asymptotic, is also the A_{3}-set of the height function along the binormal direction associated to v ([1]). This curve meets the Δ-set tangentially at isolated points ([2]) and intersects the S_{2}-curve transversally at a C_{3}-singularity. At inflection points the Δ-set has a Morse singularity and the configuration of the B_{2} and S_{2}-curves there is given in [1].

In [5], carried out a study using the family orthogonal projections in planes.
Definition 1.3 The orthogonal projections to planes is given by

$$
\begin{aligned}
\Pi: M \times G(2,4) & \rightarrow \mathbb{R}^{2} \\
(p, v) & \mapsto \Pi(p, v)=(\langle p, a\rangle,\langle p, b\rangle),
\end{aligned}
$$

where $G(2,4)$ is the Grassmanian of 2-planes in \mathbb{R}^{4} and, a and b are unit vectors linearly independents generating the plane $v \in G(2,4)$.

The family projections in planes can be seen to 4-parameters and, moreover, fixed v is locally in $p \in M$ a germ of a $\operatorname{map} \Pi_{v}: \mathbb{R}^{2}, 0 \rightarrow \mathbb{R}^{2}, 0$ which give that contact between M and the plane which is the orthogonal complement of plane v. The generic \mathcal{A}-singularities of that germs are those in [8].
Π_{v} is singular at $p \in M$, if only if, the intersection of the tangent plane to M at p with the orthogonal complement of the plane v, denoted by v^{\perp}, is different of zero, i. e., there is a tangent vector not null $u \in T_{p} M$ such that $u \in v^{\perp}$. The singularities of corank 2 correspond to normal planes to surface. For singularities of corank 1, at hyperbolic (resp.
parabolic) points there are two (resp. one) degenerate planes whose projection is of type 4_{2} (or worse) and at elliptic points there is only transversal singularities to Σ^{1}. (Σ^{1} is the set of singular points with corank 1). On the plane of degenerate projection v chosen a direction in this plane, the A_{2}-set of the height function coincides with the 4_{2}-set of Π_{v}.

2 The multi-local curves and their applications

We are seeking the loci of points in M where h_{v}, P_{v} has a multi-local singularity of \mathcal{A}_{e}-codimension ≤ 2.

Theorem 1 In the family the height function h_{v}. The A_{3}-curve and the $A_{1} A_{2}$-curve are generically tangential at A_{4} with contact of order 2 .

Figure 1: multi-local curves in M away of the inflection points

Theorem 2 In family of the orthogonal projection P_{v}. For a generic surface M embedded in \mathbb{R}^{4}, the multi-local singularities of P_{v} of codimension 2 that are adjacent to local singularities occur only at codimension 3 local singularities of P_{v}.
(i) At a B_{3}-singularity of P_{v}, there is an $\left[A_{2}\right]$-curve which meets the B_{2}-curve transversally;
(ii) At an S_{3}-singularity of P_{v}, there are no codimension 2 multi-local singularities;
(iii) At a C_{3}-singularity of P_{v}, there are no codimension 2 multi-local singularities;
(iv) At an H_{3}-singularity of P_{v}, there is an $\left(A_{0} S_{0}\right)_{2}$-curve which meets the Δ-set tangentially;
(v) At a $P_{3}(c)$-singularity of P_{v}, there are the curves $A_{0} S_{1},\left(A_{0} S_{0}\right)_{2}$ and $A_{0} S_{0} \mid A_{1}^{ \pm}$which meets the Δ-set tangentially.

All the tangential are generically of order 2, (see Figure 2). Where $\left[A_{2}\right],\left(A_{0} S_{0}\right)_{2}, A_{0} S_{1}$ and $A_{0} S_{0} \mid A_{1}^{ \pm}$are bigerms the \mathcal{A}_{e}-codimension 2 classified in [3].

Proposition 2.1 At a point $P_{3}(c)$, the surface is projectively equivalent to $\left(x, y, f_{1}(x, y), f_{2}(x, y)\right)$, where

$$
j^{4}\left(f_{1}(x, y), f_{2}(x, y)\right)=\left(x^{2}+x y^{2}+\alpha y^{4}, x y+\beta y^{3}+\phi_{4}\right)
$$

Figure 2: multi-local curves in M away of the inflection points

We denote tangents at $P_{3}(c)$ to the Legendrian lifts of the parabolic, $B_{2},\left(A_{0} S_{0}\right)_{2}, A_{0} S_{1}$ and $A_{0} S_{0} \mid A_{1}^{ \pm}$curves by $l_{P}, l_{b}, l_{s_{0}}, l_{s_{1}}$, and $l_{s_{02}}$, respectively. We denote by l_{g} the contact element to the point $P_{3}(c)$ (the vertical line in the contact plane at that point).

Theorem 3 At a generic point $P_{3}(c)$, two cross-ratios can permit recover the projective invariants α and β of surface.

References

[1] J. W. Bruce and A. C. Nogueira, Surfaces in \mathbb{R}^{4} and duality. Quart. J. Math. Oxford Ser. Ser. (2), 49 (1998), 433-443.
[2] J. W. Bruce and F. Tari, Families of surfaces in \mathbb{R}^{4}. Proc. Edinb. Math. Soc. 45 (2002), 181-203.
[3] C. A. Hoobs, N. P. Kirk, On the classification and bifurcation of multi-germs of maps from surfaces to 3 -space, Math. Scand. 89 (2001), 57-96
[4] J. A. Little, On the singularities of submanifolds of heigher dimensional Euclidean space. Annli Mat. Pura et Appl. (4A) 83 (1969), 261-336.
[5] A. C. Nogueira, Superfícies em \mathbb{R}^{4} e dualidade. Tese de Doutorado, ICMC, São CarlosUSP, 1998.
[6] D. K. H. Mochida, M. C. Romero-Fuster and M. A. S. Ruas, The geometry of surfaces in 4-space from a contact viewpoint. Geometria Dedicata 54 (1995), 323-332.
[7] D. M. Q. Mond, On the classification of germs of maps from \mathbb{R}^{2} to \mathbb{R}^{3}. Proc. London Math. Soc. 50 (1985), 333-369.
[8] J. H. Rieger, Families os maps from the plane to the plane.J. London Math. Soc. (1987), 351-369.

