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Abstract. We have developed a code to solve the two-dimensional time-dependent Schrödinger 

equation, for a magnetized proton in the presence of a fixed field particle and of a uniform 

magnetic field. In the relatively high-speed case, the fast-speed proton has the similar behaviors 

to those of classical theories. In the low-speed case the magnitudes both in mechanical 

momentum mv mv , where m  is the mass and v  is the velocity of the particle, and position 

r r  are appreciably decreasing with time. However, the kinetic energy 2 / 2K m v and 

the potential energyU qV , where q  is the electric charge of the particle and V  is the 

scalar potential, do not show appreciable changes. This is because of the increasing variances, 

i.e. uncertainty, both in momentum and position. The increment in variance of momentum 

corresponds to the decrement in the magnitude of momentum: Part of energy is transferred from 

the directional (the kinetic) energy to the uncertainty (the zero-point) energy. 

 

1 Introduction 

We have shown in Ref. [1], that the quantum mechanical variance in position may reach the 
square of the interparticle separation in a time interval of the order of 10

-4
 sec for typical 

magnetically confined fusion plasmas with a number density of n ~10
20

 m
-3

 and a temperature of 
T~10keV. After this time the wavefunctions of neighbouring particles would overlap, as a result 
the conventional classical analysis may lose its validity: Plasmas may behave like extremely-
low-density liquids, not gases, since the size of each particle is of the same order of the 
interparticle separation.  

In Refs. [2–4], we have also shown that for distant encounters in typical fusion plasmas of a 
temperature 10keVT   and 20 310 mn  , the average potential energy 30U meV is as small 
as the uncertainty in energy 40E meV, and for a magnetic field 3B T, the spatial size of 
the wavefunction in the plane perpendicular to the magnetic field is as large as the magnetic 
length 810B

  m which is much larger than the typical electron wavelength 1110e
  m, and 

is around one-tenth of the average interparticle separation  . 

 

2 Schrödinger Equation 

We have solved the two-dimensional Schrödinger equation for a wavefunction   at position 
r and time t,  
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where   and A  stand for the scalar and vector potentials, m  and q  the mass and electric 
charge of the particle under consideration, 1i    the imaginary unit, and / 2h   the 
reduced Planck constant. The initial condition for wavefunction at 0r r  with 0r  being the 
initial centre of ,  is given by  
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where the magnetic length B is the initial standard deviation, and 
0 0 /mk v  is the initial 

wavenumber vector. Here m   is the mass of the particle under consideration, 
0v  is the initial 

velocity of the corresponding classical particle. 
By using the finite difference method in space with Crank-Nicolson scheme for the time 

integration, Eqs. (1) and (2) above become as 
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where I  is a unit matrix, H  the numerical Hamiltonian matrix, and  n  stands for the 
discretized set of the two dimensional time-dependent wavefunction  , ,x y t  at a discrete time 

nt n t   to be solved numerically. 
We use successive over relaxation (SOR) scheme for time integration in our numerical 

calculation. Calculation is done on a GPU (Nvidia GTX-580: 512cores/3GB @1.54GHz) [1-6]. 

2.1 Electrostatic potential due to a field particle 

Here we have assumed that the field particle is a quantum-mechanical particle centred at the 
origin with the wavefunction f  similar to that given in Eq. (3), but is fixed in space and time, 
as 
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where 2

z  is the variance in position in z -direction. In magnetically confined fusion plasmas, 

0/z Bh mv  holds, so that the square of the second factor can be approximately the same 
as a Dirac delta function  z  centred at 0z  . Thus the electrostatic potential f  in the x -
y plane, due to the distributed charge is given by 
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where 2 2R x y  , fq is an electric charge of the field particle, 0 is the vacuum permittivity, 
and  K M is the complete elliptic integral of the first kind with the parameter M being defined 
as  

2
4 '/ 'M RR R R  [8]. 

 

3 Numerical Results 

In our numerical calculation, we normalized the following parameters for analysis, as listed in 
Table 1. Lengths are normalized by cyclotron radius of a proton with a speed of 10 m/s in a 
magnetic field of 10 T. The cyclotron frequency in such a case is used for normalization of the 
time. 

The magnetic length for a proton in 10B  T, 8/ 10B eB  m is a measure for the 
spread of a wave function in the plane perpendicular to the magnetic field. With these 
normalization, Planck constant 0.60 , initial uncertainty in position 2 2/ 0.78B eB and 
initial uncertainty in kinetic momentum  3/ 2 0.91eB are order of unity. Note that the 
kinetic energy of a classical proton speed 0 27v m/s in 10B  T corresponds to the uncertainty 
of the momentum. In the numerical results to be presented in the following subsections, the 
Schrödinger Equation is solved for the time duration of fifty cyclotron rotations by a proton.  



For low-speed case, 0 50v  m/s and 0 10v  m/s, initially the Probability Distribution 
Function (PDF) is a circular shape and changes to elongated shape at second gyration. This 
phenomenon extended further for each gyration. Eventually at the 40th gyration, the PDF of 
the particle tends to have almost uniformly distributes along the classical cyclotron orbit, as 
shown in Fig. 1, in which the width of the distribution is nearly the magnetic length of 

B qB  as shown in Fig. 2. 
 

Table 1 Normalized parameter for mass of the particle, charge, magnetic flux density, velocity, length and time. 

Parameters Normalization 

Mass of the particle 271.6722 10m   kg
 

Charge 191.602 10q   C 

Magnetic flux density 10B  T 

Velocity 10v m/s 

Length 81.04382 10   m 

Time 91.04382 10t   s 

 

 
             Initial speed 

0 100v  m/s         Initial speed 
0 50v  m/s             Initial speed 

0 10v  m/s 

Fig. 1. Initial condition ( 0t  ) of Probability Density Function (PDF) of a single charged particle, in the presence of 

a fixed field particle at the origin.  

 

 
             Initial speed 

0 100v  m/s         Initial speed 
0 50v  m/s             Initial speed 

0 10v  m/s 

Fig. 2. The PDF of a single charged particle, in the presence of a fixed field particle at the origin, after 40 gyrations.  

 

4 Summary 

We have solved the two-dimensional time-dependent Schrödinger Equation for a magnetized 
proton in the presence of a fixed field particle with an electric charge of 52 10 e and of a 
uniform magnetic field of 10TB  . In the relatively high-speed case of 0 100v m/s, the 
behaviours are similar to those of classical ones. However, in the low-speed case of 0 50v  m/s 
and 0 10v  m/s, the magnitudes both in momentum mv m v  and position r = |r| are 
appreciably decreasing with time as shown in Fig 3 and Fig 4. The kinetic energy 2 / 2K m v  



and the potential energy U qV  do not show appreciable changes except for a small 
amplitude oscillation, because of the increasing variances, i.e. uncertainty, both in momentum 
and position. 

The increment in variance of momentum corresponds to the decrement in the magnitude of 
momentum: Part of energy is transferred from the directional (the kinetic) energy to the 
uncertainty (the zero-point) energy. 

In summary, quantum-mechanical analyses are necessary for slow particles with mass m and 
charge q  in the presence of magnetic field B , whose kinetic energy K  is of the order of 

/ 2qB m . 

 

 
                       Initial speed 

0 100v  m/s    Initial speed 
0 50v  m/s                          Initial speed 

0 10v  m/s 

Fig. 3. Normalized expectation values of momentum mp v  after 40 gyrations. 

 

 

 
                       Initial speed 

0 100v  m/s    Initial speed 
0 50v  m/s                          Initial speed 

0 10v  m/s 

Fig. 4. Normalized expectation position r  after 40 gyrations. 
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