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Main results

Our model is a selfadjoint polynomial

X = P(A1, . . . ,Ak ,G )

where

• Let G be an n × n GUE (Gaussian unitary ensemble);

• A1, . . . ,Ak are n × n deterministic Hermitian matrices
“converging to compact operators”;

• P(0, . . . , 0,G ) = 0 (e.g. P(A1,A2,G ) = A1G
2A1 + GA2G ).

Theorem
Almost surely, the eigenvalues of P(A1, . . . ,Ak ,G ) converge to the
eigenvalues of some compact selfadjoint operator. We compute
explicit limiting eigenvalues for several examples of P.



Empirical Eigenvalue Distribution
• X : n × n Hermitian random matrix
• λ1(X ) ≥ λ2(X ) ≥ · · · ≥ λn(X ): Eigenvalues of X

The random probability measure

µX :=
1

n

n∑
i=1

δλi (X )

is called the empirical eigenvalue distribution of X .

Fig. 1: Histogram of µG for GUE (n = 3000). Taken from Wikipedia



GUE (Gaussian Unitary Ensemble)
A random mat. G = G (n) := (gij)

n
i ,j=1 is a (normalized) GUE if

• G is Hermitian,
• {Re(gij), Im(gij) : 1 ≤ i ≤ j ≤ n} is a family of independent
Gaussian r.v.s

• E[gij ] = 0
• Var(Re(gij)) = Var(Im(gij)) =

1
n if i ̸= j ,

• Var(gii ) =
2
n .

Fig. 2: GUE (n = 3000). Taken from Wikipedia



Wigner’s semicircle law
• Eugene Wigner (’55, ’58) proved that

E

[
1

n

n∑
i=1

δλi (G)

]
⇒ 1

2π

√
(4− x2)+ dx︸ ︷︷ ︸

Wigner’s semicircle law

as n → ∞.

• Ludwig Arnold ’67 proved that

1

n

n∑
i=1

δλi (G) ⇒
1

2π

√
(4− x2)+ dx as n → ∞ almost surely.

Fig. 3: Histogram of µG for GUE (n = 3000). Taken from Wikipedia



Is there an outlier?
An outlier is an eigenvalue of G which lies outside of [−2, 2] (the
support of Wigner’s semicircle law).

The almost sure weak convergence

1

n

n∑
i=1

δλi (G) ⇒
1

2π

√
(4− x2)+ dx

does not say anything about small number of outliers.



Is there an outlier?
Geman ’80 proved that there is no outlier, that is,

Theorem (Geman, Ann. Probab. ’80)

The largest eigenvalue λ1(G ) converges to 2 as n → ∞ almost
surely.

Remark
Haagerup and Thorbjørnsen ’05 proved a similar result for
polynomials of independent GUEs.



Near Edge

We know that λ1(G (n)) → 2 almost surely (Law of large
numbers). Is there a sequence {an}n≥1, an ↑ ∞ such that

an(λ1(G (n))− 2)

converges to a non zero limit?

• Central limit theorem

• Law of iterated logarithms



Tracy-Widom distribution (CLT)

Theorem (Tracy-Widom, CMP ’94 )

For any x ∈ R

P
[
n2/3(λ1(G )− 2) ≤ x

]
→ F (x), n → ∞,

where

F (x) = exp

(
−
∫ ∞

x
(y − x)2q(y)2 dy

)
,

and q is the unique solution to the Peinlevé II equation

d2q

dx2
= xq + 2q3

with the boundary condition q(x) ∼ Ai(x), x → ∞.



Law of non-iterated logarithm

Theorem (Paquette, Zeitouni, arXiv, June ’15)

lim
n→∞

n2/3(λ1(G )− 2)

(log n)2/3
=

1

42/3
a.s.

Conjecture

lim
n→∞

n2/3(λ1(G )− 2)

(log n)1/3
=

1

41/3
a.s.



Perturbation of GUE

Péché ’06 considered the following deformation of a GUE:

X = G + A,

where A is an n × n deterministic Hermitian matrix (with bounded
rank, for simplicity).
A phase transition of the largest eigenvalue λ1(X ) appears.



Perturbation of GUE

Theorem (Péché, PTRF ’06)

Suppose that for a fixed r ∈ N and θ1 ≥ θ2 ≥ · · · ≥ θr ,

A(n) = diag(θ1, θ2, . . . , θr , 0, . . . , 0).

Then almost surely

lim
n→∞

λ1(G (n) + A(n)) =

{
2, θ1 ≤ 1,

θ1 +
1
θ1
, θ1 > 1.

θ +1
θ1

1

θ1 >1

Fig. 4: Empirical eigenvalue distribution of G (n) + A(n)



Perturbation of GUE

Remark

(1) Péché also obtained a Tracy-Widom type distribution.

(2) Baik, Ben Arous, Péché ’05 considered the multiplicative
perturbation (I + A)G 2(I + A) and found a phase transition.

(3) Benaych-Georges and Nadakuditi ’11 generalized the results of
Baik, Ben Arous, Péché ’05 and Péché ’06.

(4) General polynomials of A’s and G ’s have not been investigated.



Our Model

Our model (in a simple case) is

X = P(A1, . . . ,Ak ,G )

such that

• P(0, . . . , 0,G ) = 0,

• (A1, . . . ,Ak) are n × n deterministic matrices converging to
trace class operators, i.e. there exists a tuple (X1, . . . ,Xk) of
trace class operators on a Hilbert space H such that

lim
n→∞

Trn(A
ε1
i1
· · ·Aεp

ip
) = TrH(X

ε1
i1

· · ·X εp
ip
)

for any p ∈ N, (i1, . . . , ip) ∈ {1, . . . , k}p,
(ε1, . . . , εp) ∈ {1, ∗}p.



Model (Examples)

Suppose that {µn}∞n=1, {µ′
n}∞n=1 ∈ ℓ1(R) and

• G: n × n GUE,

• A = diag(µ1, µ2, . . . , µn),A
′ = diag(µ′

1, µ
′
2, . . . , µ

′
n)

For example we can consider

• P(A,A′,G ) = A+ GA′G ,

• P(A,A′,G ) = AGA+ GA′G ,

• P(A,G ) = AG + GA,

• P(A,G ) = i(AG − GA).



Main theorem 1: Discrete eigenvalues

Our model is an n × n Hermitian random matrix

X = P(A1, . . . ,Ak ,G )

such that

• P(0, . . . , 0,G ) = 0,

• (A1, . . . ,Ak) are n × n deterministic matrices converging to
trace class operators.

Roughly, “limn→∞ G (n)” is a “bounded operator”, and
“limn→∞ Ai (n)” is a “trace class operator”, so we can expect that
P(A1, . . . ,Ak ,G ) is also a “trace class operator”.

Theorem (Collins, Sakuma, H.)

For any such polynomial P(A1, . . . ,Ak ,G ), its eigenvalues
{λi (n)}ni=1 converge “pointwise” to a deterministic sequence
{λi}∞i=1 ∈ ℓ2(R) almost surely.



Main Theorem 1: Discrete eigenvalues

Theorem (Collins, Sakuma, H.)

For any such polynomial P(A1, . . . ,Ak ,G ), its eigenvalues
{λi (n)}ni=1 converge “pointwise” to a deterministic sequence
{λi}∞i=1 ∈ ℓ2(R) almost surely.

Definition
“Pointwise” convergence means that if we order {λi (n)}ni=1 in the
way

λ+
1 (n) ≥ λ+

2 (n) ≥ · · · ≥ 0 ≥ · · · ≥ λ−
2 (n) ≥ λ−

1 (n),

then

lim
n→∞

λ+
i (n) = λ+

i , i ∈ N,

lim
n→∞

λ−
i (n) = λ−

i , i ∈ N.



Main Theorem 2: Explicit computation

• EV(X ): the multiset of eigenvalues of a Hermitian matrix or
a selfadjoint compact operator X . EV(X ) ∪ EV(Y ) counts
the multiplicity, e.g.

{2, 1, 0, 0, . . . } ∪ {3, 2, 1, 0, . . . } = {3, 2, 2, 1, 1, 0, . . . }.

Theorem (Collins, Sakuma, H., simplified version)

Suppose that {µi}i≥1, {µ′
i}i≥1 ∈ ℓ1(R) and

• A = A(n) = diag(µ1, µ2, . . . , µn),

• A′ = A′(n) = diag(µ′
1, µ

′
2, . . . , µ

′
n),

• G = G (n) is a GUE.

Then

(1) lim
n→∞

EV(A+ GA′G ) = {µi}i≥1 ∪ {µ′
i}i≥1,

(2) lim
n→∞

EV(AG 2A+ A′G 2A′) = {µ2
i + (µ′

i )
2}i≥1,



Main theorem 2: Explicit computation

Theorem (Collins, Sakuma, H., simplified version)

Suppose that {µi}i≥1, {µ′
i}i≥1 ∈ ℓ1(R) and

• A = A(n) = diag(µ1, µ2, . . . , µn),

• A′ = A′(n) = diag(µ′
1, µ

′
2, . . . , µ

′
n),

• G = G (n) is a GUE.

Then

(1) lim
n→∞

EV(A+ GA′G ) = {µi}i≥1 ∪ {µ′
i}i≥1,

(2) lim
n→∞

EV(AG 2A+ A′G 2A′) = {µ2
i + (µ′

i )
2}i≥1,

(3) lim
n→∞

EV(AG + GA) = lim
n→∞

EV(i(AG − GA))

= {µi}i≥1 ∪ {−µi}i≥1,

(4) lim
n→∞

EV(AG 2 + G 2A) = {(
√
2 + 1)µi}i≥1 ∪ {(1−

√
2)µi}i≥1,



Proof of Main Theorem 1

Step 1: Convergence of traces implies convergence of eigenvalues.

Proposition

Suppose that X ,X (n) are trace class selfadjoint operators on
Hilbert spaces H,H(n) for n ∈ N. If

lim
n→∞

TrH(n)(X (n)ℓ) = TrH(X
ℓ) ∀ℓ ∈ N,

then lim
n→∞

EV(X (n)) = EV(X ).

Corollary

Suppose that X ,Y are trace class selfadjoint operators on Hilbert
spaces H,K. If TrH(X

ℓ) = TrK (Y
ℓ) for every ℓ ∈ N then

EV(X ) = EV(Y ).



Proof of Main Theorem 1
Step 2: ∃X ∈ S2(H)sa, lim

n→∞
Trn(P(A1, . . . ,Ak ,G )ℓ) = TrH(X

ℓ)

(almost surely)

• First we take the expectation.
• We look at a monomial.

The problem reduces to study of E[Trn(A1G
ℓ1A2G

ℓ2 · · ·AkG
ℓk )].

Proposition (Shlyakhtenko, arXiv ’15, Sep 29)

For any p1, . . . , pk ∈ N ∪ {0},

E[Trn(A1G
ℓ1A2G

ℓ2 · · ·AkG
ℓk )] = Trn(A1 · · ·Ak)

k∏
i=1

E[trn(G ℓi )]+O(n−1),

where trn = 1
nTrn. It is known that

lim
n→∞

E[trn(G ℓ)] =

∫ 2

−2
xℓ

1

2π

√
4− x2dx .



Proof of Main Theorem 1
We know that

E[Trn(A1G
ℓ1A2G

ℓ2 · · ·AkG
ℓk )] = Trn(A1 · · ·Ak)

k∏
i=1

E[trn(G ℓi )]+O(n−1),

where trn = 1
nTrn. We will remove E.

Lemma
Let Y := Trn(A1G

ℓ1A2G
ℓ2 · · ·AkG

ℓk ). Then

E[|Y − E[Y ]|4] = O(n−2).

By Borel-Cantelli’s lemma we have the almost sure convergence

lim
n→∞

Trn(A1G
ℓ1A2G

ℓ2 · · ·AkG
ℓk ) = lim

n→∞
Trn(A1 · · ·Ak)

k∏
i=1

E[trn(G ℓi )].
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