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What is free probability?

Free probability theory is probability theory based on free
independence on a noncommutative probability space.

Free probability was proposed in 1980s to attack problems in
operator algebras (pure mathematical problems).

In 1991 a connection between eigenvalues of random matrices
and free probability was discovered. Then people began to use
free probability in applied fields such as:

Wireless communications (Verdú, Tulino, Debbah,
Benaych-Georges, etc)
Quantum information theory (Collins, Nechita, Fukuda,
Belinschi, etc)



Organization of talk

1. Noncommutative probability space

2. Free independence and free probability

3. Results



Measure-Theoretical Probability

(Ω,F ,P): Probability space
Ω: set,
F : σ-algebra,
P: probability measure

X : Ω→ C: random variable

E[X] =
∫
RX(ω)P(dω): Expectation

Linearity:
E[X + Y ] = E[X] + E[Y ],
E[αX] = αE[X].

Positivity: E[|X|2] ≥ 0.

E[1] = 1.



Measure-Theoretic Probability fails: Bell’s inequality

A pair of particles X,Y is born and they go to converse directions.

A←−−−−−−−−
X
⃝

Y
⃝ −−−−−−−→B

Each particle has a spin. The spin can be measured along the
direction with any angle θ and takes values either 1 or −1.
We measure the spin of particle X in θ direction at a point A. We
get a value x1(θ). Similarly y1(ϕ). Repeat this experiment to get
data xj(θ), yj(ϕ). We may compute

ρ(θ, ϕ) :=
1

N

N∑
j=1

xj(θ)yj(ϕ) for large N.

It is natural to model the spins as random variables. However,

Experiments show that:

It is impossible to realize a family of random variables
X(θ), Y (θ) : Ω→ {±1} such that E[X(θ)Y (ϕ)] = ρ(θ, ϕ) (∀θ, ϕ).



Experiments show that:

It is impossible to realize a family of random variables
X(θ), Y (θ) : Ω→ {±1} such that E[X(θ)Y (ϕ)] = ρ(θ, ϕ) (∀θ, ϕ).

Proof (Ref: Wikipedia “Bell’s inequality”).

Suppose that four random variables
X(θ), X(θ′), Y (ϕ), Y (ϕ′) : Ω→ {−1, 1} exist in a probability
space (Ω,F ,P), then

C := |ρ(θ, ϕ) + ρ(θ′, ϕ)− ρ(θ, ϕ′) + ρ(θ′, ϕ′)|
= |E[X(θ)Y (ϕ) +X(θ′)Y (ϕ)−X(θ)Y (ϕ′) +X(θ′)Y (ϕ′)]|
= |E[(X(θ) +X(θ′))Y (ϕ) + (X(θ′)−X(θ))Y (ϕ′)]|
≤ E[|X(θ) +X(θ′)|+ |X(θ′)−X(θ)|]
≤ 2. (Bell’s inequality)

However, Aspect’s experiment (1982) shows that for some
θ, θ′, ϕ, ϕ′ we can achieve C ∼ 2.8.



Noncommutative probability space

The idea of noncom. prob. sp. appeared in the book of von
Neumann “Mathematical Foundations of Quantum Mechanics
(1932)”, one year earlier than the Kolmogorov’s book
“Foundations of the Theory of Probability (1933)”.

A: ∗-algebra with an involution ∗ (typically matrix algebra).

φ: A → C, linear, φ(X∗X) ≥ 0, φ(1) = 1.

(A, φ) is called a noncommutative probability space. φ is called a
state or expectation. X ∈ A is called a random variable.

If X = X∗ (self-adjoint) then ∃µX = µφ,X : a probability
measure on R (called the law of X) s.t.

φ(Xn)︸ ︷︷ ︸
nth moment

=

∫
R
xn dµX(x), n ≥ 0.



Examples

1 Matrix algebra.
A = Mn(C),

φn(X) = 1
nTr(X). (φn(1) = 1, φn(X

∗X) ≥ 0).

The law of X: µX = 1
n

∑n
j=1 δλj

(λj : Eigenvalues of X)
2 Random matrices.

A = {n× n matrices with entries random variables}

φn(X) = 1
n

∑n
j=1 E(Xjj), X = (Xij)1≤i,j≤n.

If X is a hermitian random variable then

The law of X : µX = E

 1

n

n∑
j=1

δλj


(Mean eigenvalue distribution’)
λj : (random) eigenvalues of X



Examples

Measure-Theoretical probability ⊂ Noncommutative probability

(Ω,F ,P): Probability space

A = {X : Ω→ C | E|X|n <∞,∀n ≥ 1},
φ = E.



Intermediate Summary

In quantum physics there is a family of random variables
which cannot be modeled in the framework of Kolmogorov’s
measure-theoretic probability.

We can solve this problem by introducing the concept
“noncommutative probability space”



Independence

Classical independence. Suppose X,Y are bounded random
variables.

X,Y are indep.⇔ P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B] (∀A,B)

⇔ E[XmY n] = E[Xm]E[Y n] (∀m,n).

When X,Y ∈ A are noncomm., then

Definition

X,Y are indep. ⇔
φ(Xm1Y n1Xm2Y m2 · · · ) = φ(Xm1+m2+···)φ(Y n1+n2+···),
∀mi, ni ∈ N ∪ {0}.

For mathematical interest, let’s look at independence from a
general point of view.

Definition

Independence of X,Y ⇔ A universal rule for computing
φ(Xm1Y n1Xm2Y m2 · · · ) only by φ(Xm), φ(Y n),m, n ≥ 0.



Free independence

Definition (Voiculescu Lect. Notes. Math. 85)

X,Y ∈ A are free independent
def⇔ for any finitely many

polynomials Pi(X), Qi(Y ) with φ(Pi(X)) = φ(Qi(Y )) = 0,∀i we
have

φ(· · ·P1(X)Q1(Y )P2(X)Q2(Y ) · · ·︸ ︷︷ ︸
finite product

) = 0.

Example

X,Y : free independent.
Consider P1(X) = X − φ(X)1, Q1(Y ) = Y − φ(Y )1, then
φ(P1(X)Q1(Y )) = 0 ⇒ φ(XY ) = φ(X)φ(Y ). Similarly

φ(XYX) = φ(X2)φ(Y ),

φ(XYXY ) = φ(X2)φ(Y )2 + φ(X)2φ(Y 2)− φ(X)2φ(Y )2.



Classical CLT

X1, X2, X3, · · · : indep. and identically distributed (E[Xn
i ] does

not depend on i), φ(Xi) = 0, φ(X2
i ) = 1, then

The law of
X1 + · · ·+XN√

N

N→∞−−−−→ 1√
2π

e−
x2

2 dx



Free CLT

If noncom. selfadjoint random variables X1, X2, X3, · · · are free
indep. and identically distributed (φ(Xn

i ) does not depend on i)
and φ(Xi) = 0, φ(X2

i ) = 1, then

The law of
X1 + · · ·+XN√

N

N→∞−−−−→ ??

Theorem (Voiculescu J. Funct. Anal. 86)

The limit law is given by

1

2π

√
4− x2 dx, −2 < x < 2. (Wigner’s semicircle law)



Eigenvalues of random matrices

In 1950s eigenvalues of random matrices were proposed to describe
energy levels of nucleons of a nucleus. Wigner proved the following.

X(n) = (Xij(n))1≤i,j≤n: GUE, that is:

X(n) is an n× n hermitian random matrix.

(Xij(n))i≥j : indep. Gaussians.

E[Xij(n)] = 0, E[|Xij(n)|2] =

{
1
2n , i ̸= j
1
n , i = j.

The law of X: µX(n) = E[ 1n
∑n

i=1 δλi
].

Theorem (Wigner, Ann. Math. 55)

µX(n)
n→∞−−−→ 1

2π

√
4− x2dx.

Is there a connection between random matrices and free
independence?



Random matrices and free independence

Theorem (Voiculescu, Invent. Math. 91)

Xi(n): n× n GUE (n ≥ 1),

For each n, X1(n), X2(n), X3(n), . . . are indep. (as
vector-valued random variables)

φn(A) :=
1
n

∑n
j=1 E[Ajj ].

Then X1(n), X2(n), X3(n), . . . are asymptotically free
independent as n→∞.

Corollary

Thm of Voiculescu ’91 + free CLT ⇒ Wigner’s thm ’55



Free convolution

X = X∗, Y = Y ∗: free indep.

µX+Y is called the free convolution of µX , µY and is denoted
by µX ⊞ µY .

If X ≥ 0 then µ√
XY

√
X is called the free multiplicative

convolution and is denoted by µX ⊠ µY .



Computing free convolutions

Cauchy transform:

GX(z) = GµX (z) =

∫
R

1

z − x
µX(dx) = φ((z−X)−1), z ∈ C+

Free cumulant transform

C⊞X(z) := G−1
X (z)− 1

z
.

Theorem (Bercovici-Voiculescu, Indiana Univ Math J 93)

If X,Y are free indep. then C⊞X+Y (z) = C⊞X(z) + C⊞Y (z) in their
common domain.

C⊞X corresponds to C∗X(z) = logE[ezX ]: if X,Y are indep. then
C∗X+Y = C∗X + C∗Y .



Examples

C⊞X(z) := G−1
X (z)− 1

z
.

Semicircle law w:

w(dx) =

√
4− x2

2π
dx, |x| < 2.

C⊞w (z) = z2

w appears as the eigenvalue distribution of large GUE.

Free Poisson law π:

π(dx) =
1

2π

√
4− x

x
dx, 0 < x < 4.

C⊞π (z) = z
1−z

π appears as the eigenvalue distribution of large Wishart
matrices (=square of GUE).



Generalization of CLT: stable laws

If X1, X2, X3, . . . : i.i.d. random variables and if

Law of
X1 + · · ·+XN

N1/α

N→∞−−−−→ µ ̸= Dirac delta

then, µ is called a stable law. Always α ∈ (0, 2].

Theorem (See e.g. Zolotarev’s book ’86)

Let µ be a stable law. Then C∗µ(z) = −reiαρπzα, z ∈ iR+, r > 0

(⇔
∫
R ezxµ(dx) = e−reiαρπzα). We write µ = nr,ρ,α.

C∗X(z) = logE[ezX ]



Free stable laws

If X1, X2, X3, · · · : free indep. i.d. random variables and if

Law of
X1 + · · ·+XN

N1/α

N→∞−−−−→ µ ̸= Dirac delta

then, µ is called a free stable law. Always α ∈ (0, 2].

Theorem (Bercovici, Pata, Biane, Ann. Math. ’99)

If µ is free stable then C⊞µ (z) = −reiαρπzα, r > 0. We write
µ = fr,ρ,α.

C⊞µ (z) := G−1
µ (z)− 1

z .



Theorem (See e.g. Zolotarev’s book ’86)

Suppose α ∈ (0, 1), ρ ∈ [0, 1]. The classical stable law n1,ρ,α has the
density

1

π

∑
n≥1

(−1)n−1Γ(1 + αn)

n!
sin(nαρπ)x−αn−1, x > 0,

1

π

∑
n≥1

(−1)n−1Γ (1 + n/α)

n!
sin(nρπ)xn−1, x→ 0+ (asymptotic exp.)

Theorem (Kuznetsov-H. Elect. Comm. Probab. ’14)

Suppose α ∈ (0, 1), ρ ∈ [0, 1], x∗ := α(1− α)1/α−1. The free stable law
f1,ρ,α has the density

1

π

∑
n≥1

(−1)n−1 Γ(1 + αn)

n!Γ(2 + (α− 1)n)
sin(nαρπ)x−αn−1, x ≥ x∗,

1

π

∑
n≥1

(−1)n−1 Γ (1 + n/α)

n!Γ (2 + (1/α− 1)n)
sin(nρπ)xn−1, 0 ≤ x ≤ x∗.



Proof.

Let

Mµ(s) :=

∫ ∞

0
xs µ(dx) (Mellin transform)

First we compute

Mf1,ρ,α(s) =
1

π
sin(πρs)

Γ(s)Γ (1− s/α)

Γ (2 + s− s/α)
.

Then the density function of f1,ρ,α is obtained from the inversion
formula:

1

2πi

∫ i∞

−i∞
x−s−1Mf1,ρ,α(s)ds.


