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Abstract

In the unidimensional unfolding model, given m objects in general
position on the real line, there arise 1 +m(m — 1)/2 rankings. The set of
rankings is called the ranking pattern of the m given objects. Change of
the position of these m objects results in change of the ranking pattern.
In this paper we use arrangement theory to determine the number of
ranking patterns theoretically for all m and numerically for m < 8. We
also consider the probability of the occurrence of each ranking pattern
when the objects are randomly chosen.

Key words: unfolding model, ranking pattern, arrangement of hyper-
planes, characteristic polynomial, mid-hyperplane arrangement, spherical
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1 Introduction

Various models have been developed for the analysis of ranking data in psy-
chology. These include Thurstonian models, distance-based models, paired
and higher-order comparison models, ANOVA-type loglinear models, multistage
models and unfolding models, see Marden [11]. The unfolding model was de-
vised by Coombs [3, 4, 5] for the analysis of ranking data based on preferen-
tial choice behavior. This model has been widely used in practice in many
fields beyond psychology: sociology, marketing science, voting theory, etc. In
addition, the same mathematical structure can be found in Voronoi diagrams
(Okabe, Boots, Sugihara and Chiu [13]), spatial competition models in urban
economics (Hotelling [9], Eaton and Lipsey [7, 8]) and multiple discriminant
analysis (Kamiya and Takemura [10]).



According to the unidimensional unfolding model, preferential choice is made
in the following manner: all individuals evaluate m objects based on their single
common attribute. Each object is represented by a real number x;, measuring
the level of this attribute and viewed as a point on the real line R, the unidimen-
sional underlying continuum. At the same time, each individual is represented
by a point y on the same line, considered the individual’s preference and called
his/her ideal point. The model assumes that individual y ranks the m objects z;
according to their distances from y, so y prefers x; to z; iff |y —x;| < |[y—z,|. We
say that the m points representing the objects are in general position if they and
their midpoints are all distinct. Further, we do not consider partial rankings or
ties in this paper, so we treat only those individuals whose ideal points do not
coincide with any midpoint of two objects.

Let x = (z1,...,Zm) be m objects which satisfy these assumptions. By
varying the location of the ideal point y throughout R (except the midpoints),
we can account for (ZL) +1 rankings of x. The significance of using this model lies
here: there are m! potential rankings, but the psychological structure restricts
the variety of rankings that can actually occur. We call the set of (ZL) +1
rankings of x the ranking pattern of x. By considering different attributes, we

can get different sets of m real numbers z1,zo,... , T, for the same m objects,
and thus obtain different ranking patterns.
Suppose the objects are ordered as 1 < -+ < Z,,. In order to determine

the number of ranking patterns, we need to know the number of possible rank
orders of the midpoints z;; = (x; + x;)/2, 1 < i < j < m. Any rank order
of the midpoints x;;, 1 < ¢ < j < m, must satisfy the condition that the
rank d(i,j) of z;; from left to right on R be increasing in ¢ for any fixed j as
well as increasing in j for any fixed i. Consider the number g,, of functions
d:{(,j)|1<i<ji<m}—{1,2,...,m(m —1)/2} satisfying this condition.
Clearly g, serves as an upper bound for the number of possible rank orders
of the midpoints x;;, 1 < ¢ < j < m. Thrall [19] obtained this number by
considering a problem similar to that of counting the number of standard Young
tableaux. However, ¢,, is only an upper bound, since the rank order of the
midpoints meeting the above-mentioned condition does not necessarily satisfy
other restrictions induced by the rank order of the objects.

In this paper, we use the theory of hyperplane arrangements to find the
number of possible rank orders of midpoints and thereby obtain the number
of ranking patterns generated by the unidimensional unfolding model. For the
general theory of hyperplane arrangements, see Orlik and Terao [14]. The orga-
nization of this paper is as follows. In Section 2, we define the mid-hyperplane
arrangement and show that the number of ranking patterns can be obtained
by counting the number of chambers of this arrangement. We give a formula
for the number of ranking patterns for all m in Corollary 2.7. Although this
provides a theoretical solution of our problem, explicit calculations are difficult.
In Section 3, we reduce the calculation to that of counting the number of points
in certain finite sets. Based on these results, we obtain the number of ranking
patterns for m < 7 in Section 4 and for m = 8 in Section 5. We also show
in those sections that the characteristic polynomial of the mid-hyperplane ar-
rangement is a product of linear factors in Z[t] if and only if m < 7. In Section
6, we consider the question of the probabilities of ranking patterns and give the
answer for m < 5 objects. For m = 5 the problem reduces to that of finding
volumes of certain spherical tetrahedra.

Recently Stanley [16] considered a similar problem in the Minkowski space.
In this context this note deals with the “classical case.”



2 Arrangements and ranking maps

In this section we interpret ranking maps and ranking patterns in terms of ar-
rangements. We define the mid-hyperplane arrangement and prove in Corollary
2.7 that the number of ranking patterns is expressed in terms of the character-
istic polynomial of this arrangement.

Let m be an integer with m > 3. Define two sets of hyperplanes in the
m-~dimensional Euclidean space R™.

(I) Hij::{(xl,...,xm)ERm|xi=xj} (1§Z<]§m)

The hyperplane arrangement B, := {H;; | 1 < i < j < m} is called the braid
arrangement [14, p.13]. It has |B,,| = ("21) hyperplanes. Let

Iy :={(p,q,r,8) |1 <p<qg<m, p<r<s<m, p,q,r,s are distinct}.
(II) Hpgrs == {(z1,...,2m) ER™ |zp + g =2, + 25}, (p,q,7,8) € I4.
Define the mid-hyperplane arrangement
Ay := B, U{Hpgrs | (p,q,7,8) € 14}
Here |A,| = (5) + 3(}). For an arbitrary arrangement A in R™, let
M(A) :=R™\ | J H
HeA

be the complement of A. The connected components of M (.A) are called cham-
bers of A. Let Ch(A) be the set of all chambers of A.

Let Py, denote all permutations of {1,2,...,m}. Form = (i1...%n) € Py, let
7 denote the corresponding bijection from {1,...,m} to itself: 7(k) =i (1 <
k < m). In this way we have a one-to-one correspondence between P, and the
symmetric group S,,, which is defined to be the set of bijections from {1,...,m}
to itself. The group S,, acts on the set P, by

om = (0(i1)...0(im)) € P
foro €S, and ™ = (i1 ...%,) € Py,. The action of S,,, on R™ is defined by

0’(331, cen ,xm) = (1‘071(1), ce ,1‘071(,”)).

Then S,, acts on M (A,,) and M (B,,) and therefore on Ch(A,,) and on Ch(B5,,).

It is well known (e.g., Bourbaki [2, Ch.5, §3, n°2, Th.1]) that the symmetric
group S,, acts on Ch(B,,) effectively and transitively. In other words, for any
C,C" € Ch(B,,), there exists a unique o € S,, with C' = ¢C. In particular,
|Ch(B,,)| = m!. Let

Co:={(z1,22,...,2m) [ 21 <2 <+ < T}

be a chamber of the braid arrangement B,,. Then Ch(B,,) = {cCy | 0 € S, }.

Fix x = (z1,22,...,2m) € M(A,,). Plot m points z1, z2, ..., Z,, on the real
line R. Let R(x) := R\ {z;; | 1 <i < j < m}, where x;; := (z; + x;)/2 is the
midpoint. Define a map

Rx : R(x) — P,
as follows:

Rx(y) = (iria...im) = |y — i, | < |y — 23, | < -+ < |y — x4,

)



where y € R(x) and (i1i2 .. .%m) € Pp,. The map Ry is called the ranking map.
The image of the ranking map R is the ranking pattern of x € M (Ap,).

Suppose x € Co N M(A;,). Then 27 < 29 < -+ < @p,. For y € R(x) and
1 <7< j<m, we have

Yy < xij <= |y — ;] < |y — xj| <= i precedes j in Rx(y),

y >z <= |y — x| > |y — xj| < j precedes i in Rx(y).

Imagine that the point y moves on the real line R from left to right. When y
is sufficiently small, Rx(y) = (12...m). Every time y “passes” z;;, the two
integers ¢ and j, which are adjacent in R (y), switch their positions. When y
is sufficiently large, Rx(y) = (m...21).

Example 2.1. Let m =3 and x1 < x2 < x3. Then

123) if y < z12,

213) if 12 <y < x13,
231) if 13 <y < To3,
)

(
_)(
(321 ’Lf To3z < Y.
Lemma 2.2. Let o € S,,, x € M(A,) and y € R(x). Then

Ro’x (y) = U(RX (y) ) :

Proof. Suppose x = (21,...,%m). Then

RGX(?/) = (il .- 'im) <~ |y - xa—l(i1)| << |y —To—1(ip,)
= Re(y) = (67 (i1) ...0 (im)) <= 0(Rx(¥)) = (i1 .im)-

O

Lemma 2.3. Let o € S, and x,x' € 0Cy N M(A;,). Then x and x' lie in the
same chamber of A, if and only if the following statement holds true:

Tpg > Tps <= T, > Ty
for each (p,q,r,s) € 1.

Proof. Each chamber of A, inside 0Cj is equal to the intersection of cCy and
half-spaces defined by either 2(zpq—2rs) = 2p+aq—2,—2s > 0 0r 2(Tpg—Trs) =
Tp+ g —xr — x5 <0 for (p,q,r,s) € Iy. O

Theorem 2.4. Leto € S,, and x,x" € cCoNM(A;,). Then x and x' have the
same ranking pattern if and only if x and X' lie in the same chamber of A,,.

Proof. Assume first that o = 1, so x,x’ € Cy N M(A,,). Suppose that x and
x' lie in the same chamber of A,,. Write x' = (z},25,...,2;,) and z}; :=
(z; +25)/2 (1 <i<j<m). By Lemma 2.3, we have

/

Tiji < Tigjy <o < Tigjes Typgy < Tipjy <00 < Ty
where t = (ZL) This shows
imRyx = {mg, m1,..., 7Tt} =im Ry,



where g, 71, ... 7T € P, are defined inductively by

o = (12 e m),
Ts = [isfs)ms—1 (1 < s <),
Here [ij] € Sp, (1 <@ < j < m) denotes the transposition of 7 and j.

Conversely, assume imRyx = iImRy/. For m = (i1i2...0y) € P, let o(7)
denote the number of inversions in 7:

(m) == [{(k1, k2) | k1 < ka2, ig, > ik, ).

As the point y moves on the real line from left to right, ¢«(Rx(y)) increases one
by one. So we may write

ime = ime/ = {7‘1’0,7‘(1, NN ,7Tt}
such that «(7s) = s (0 < s <t). Also there exists a unique transposition [isjs]
such that w3 = [isjs]ms—1 (1 < s < t). Thus x5, < iy, < -+ < @5, and
b o<l . <. <al .. It follows from Lemma 2.3 that x and x’ lie in the

1171 i2J2 it
same chamber of A,,.

For a general 0 € S, let y := 07 'x € Co N M(A,,) and y' := 07 1x' €
CoNM(A,,). By Lemma 2.2,

MRy = MRy & 0 H(imRy) =0 H(imRy) & MR, 15 = MRy 15
& imRy =imRy <y and y’ lie in the same chamber of A,,

& x and x’ lie in the same chamber of A,,.
O

Let r(m) denote the number of ranking patterns when x runs over the set
C() N M(.Am)

r(m) = {imRx | x € CoN M(A)}-

Note that for each o € S;,, [{ImRx | x € 0Cy N M (Ay,)}| is equal to r(m) by
Lemma 2.2.

Theorem 2.5. r(m) = |Ch(A,,)|/(m!).

Proof. By Theorem 2.4, r(m) is equal to the number of chambers of A,, which
lie inside Cy. Thus we have |Ch(A,,)| = r(m)|Sy| = r(m)(m!). O

Now recall some general results about the number of chambers and the
characteristic polynomial [14]. Let K be a field and V' an ¢-dimensional vector
space over K. Assume that A is an arbitrary arrangement of hyperplanes in V.
Let L = L(A) be the set of nonempty intersections of elements of A. An element
X € Lis called an edge of A. Define a partial orderon Lby X <Y <Y C X.
Note that this is reverse inclusion. Thus V is the unique minimal element of L.

Let 4 : L — Z be the Mébius function of L defined by u(V) = 1, and for
X >V by the recursion

> uy)=o.

Y<X
The characteristic polynomial of A is
WAL = 3 p(x)pm X,
XeL
Theorem 2.6 (Zaslavsky [20]). If K =R, then |x(A,—1)| = |Ch(A)|.
We combine this result with Theorem 2.5:

Corollary 2.7. r(m) = |x(Am, —1)|/(m!).



3 The characteristic polynomial of A,

It follows from Corollary 2.7 that the number of ranking patterns is determined
by the characteristic polynomial x(A,,,t). Although this polynomial has a
simple definition and it is not hard to write a computer program to determine
it from the linear forms of the hyperplanes of A,,, implementing the calculation
is a different matter. In this section, we use arrangements over finite fields to
simplify the calculation of x (A, t).

An arrangement A is called essential if the dimension of a maximal element
of L(A) is zero. The mid-hyperplane arrangement A, is not essential because
the line [ = span{1} = {A\1 | A € R} C R™, where 1 € R™ is the vector of 1’s is
a maximal element. This implies that x(Ay,,t) is divisible by ¢. The fact that
[ is contained in every hyperplane of A,, implies that x(Ay,,t) is also divisible
by (t —1). Thus x(Anm,t)/t(t — 1) is a monic polynomial of degree m — 2.

Let Hy be the hyperplane defined by z; = 0. Define A}, := A,, U {Ho}.
Then A}, is essential and the lattice L(A,,) is isomorphic to the sublattice
defined by L(A%)>m, :={X € L(A},) | X > Ho}.

The following theorem was essentially proved by Rota and Crapo in [6]. Tt
is found in this form in [17] (4.10) and [14] (Theorem 2.69) and was effectively
used by Athanasiadis (e.g., [1]).

Theorem 3.1. Let Fy be a finite field of g elements. If K =Fy, then x(A,q) =
[M(A)].

When K = F, and V is a finite set of q* elements, x(A, q) can be evaluated
by counting the number of points not on any hyperplane H € A in V. Let g be
a prime number greater than m. Let A}, , be the modulo ¢ reduction of Ay, in
(Z4)™. In other words, the hyperplanes belonging to Ay, , are:

(0) Ho := {(x1,...,2m) € (Zg)™ | 21 = 0},
(Iy) Hij :=={(z1,...,2m) € (Zy)" | zs = z;} (1 <i<j<m),and
(I1) Hpgrs :=A{(x1,...,2m) € (Zy)™ | zp+xg =2 + 25}, (pyq,7,8) € Lu.

*

The arrangement A3, is essential. The modulo ¢ reduction A, , of A,
is composed of the hyperplanes of type (I;) and (II,) above. Note that the
lattice L(Am,q) is isomorphic to the sublattice defined by L(Aj, ,)>m, = {X €
L(A;, ) | X > Ho}. Therefore, the intersection lattices L(Ay,) and L(Ay, q)
are isomorphic if L(A},)>m, and L(A}, ,)>#, are isomorphic.

Let C be the coefficient matrix of A, . For example when m = 4,

1 1 1 1 0 0 0 1 1 1
c_|lo -1 0o 0o 1 1 0 -1 -1 1
“lo o -1 0 -1 0 1 -1 1 -1

o0 0 -1 0 -1 -1 1 -1 -1

Consider the m-minors of C'. Each m-minor is parametrized by the set of
m columns used for the minor. It is known that the intersection lattice of
an essential arrangement is completely determined by the information which
m-minors vanish and which do not [18, Proposition 3]. Thus we have

Theorem 3.2. Define f(m) := max{|detT| | T is an m-minor of C and T
contains the column (1,0,...,0)T as its first column}. Let g be a prime number
greater than f(m). Then L(A,,) and L(A,, ) are isomorphic.

Next we will find an upper bound for f(m). Let m > 3 as always. Consider
the following three conditions concerning a matrix:
(i) every entry of the matrix is either —1, 0 or 1,



(ii) in every column 1 appears at most twice,
(iii) in every column —1 appears at most twice.
Define

g(m) := max{|det A| | A is an (m — 1) x (m — 1)-matrix satisfying (i,ii,iii)}.
It is clear that f(m) < g(m).
Lemma 3.3.
g(m) =2m"2 form <5, g(m)<8-3™° form > 6.

Proof. We argue by induction on m. For m = 3,4 direct computation shows
the result. The values are attained by

1 -1 1 -1

g(3)—2—det(1 _11>,g(4)—4—det -1 -1 1
0 1 1

Suppose m = 5. We show that g(5) = 8. Note that

1 1 1 1
1 -1 -1 1
det 0 -1 1 -1 1|7 8.

o 1 -1 -1
Thus g(5) > 8. We must show g(5) = det A < 8. Let a; be the ith column of A.
Denote the number of nonzero elements in a; by val(a;). If A has a column a;
with val(a;) < 2, then ¢g(5) < 2¢(4) = 8. So we may assume that 3 < val(a;) < 4
for every i. Define a} to be the uniquely determined four-dimensional column
vector with two 1’s and two —1’s which satisfies the following property:

if val(a;) = 4, then a] = a;,
if val(a;) = 3, then a] is obtained from a; by replacing

the unique zero in a; by either 1 or —1.

For example,
ifa, = | then a =

Since (3)/2 = 3 < 4, among the four vectors a (1 < i < 4) at least two are
either equal to or the negative of each other. Without loss of generality, we may
assume aj = aj. Then ajo := a; — az is composed only of 0, —1 and 1 with
val(ajz) = 2. We get

g(5) = det A = det(a;, as,as,as) = det(a; — ag,as, a3, ay)
= det(ai2, a2, a3,a4) < val(ajz)g(4) = 2g(4) = 8.

For the induction step, assume m > 6. Choose an (m — 1) X (m — 1)-matrix
A satisfying (i), (ii) and (iii) with det A = g(m). Use the Laplace expansion
formula along a; to get

g(m) < wal(ai)g(m —1)

for each ¢. If wal(a;) = 4 for every column a; of A, then all the rows sum
up to the zero vector and thus det A = 0. This is a contradiction. Therefore
we may assume that there exists a column a; with val(a;) < 3; so we obtain
g(m) < 3g(m —1). O



Theorem 3.2 and Lemma 3.3 imply

Theorem 3.4. If a prime number q satisfies

- om—2 if m <5,
1 8-3m75  ifm >6,

then the intersection lattices L(Ay,) and L( Ay, q) are isomorphic and

X(Am, q) = |M(Anm.q)l-

The following theorem shows that we can fix 1 = 0, x3 = 1 in counting

(M (A o).
Theorem 3.5. Define

Mi(m,q) :={(0,1,z3,...,2m) € M(Anq)}
Under the assumption of Theorem 3.4, we have

X(Am, q)
q(g—1)

Proof. Consider the action of the additive group F, on M (A, 4) by

= [Mi(m, q)].

(1,22, ..., Tm) — (T1 F o, 22 + 0, ...,z + @) (0 € Fy).
The set of orbits under this action is represented by the set
Moy :={(0,z2,23,...,Tm) € M(Amq)}

Thus |My| = x(Am, q)/q. Next consider the action of the multiplicative group
Fx :=TF\ {0} on Mo by

(va%"'?xm) = (vaQﬂv"wxmﬂ) (ﬂE}F;)

The set of orbits under this action is represented by the set Mj(m,q). Thus
[Mi(m, q)] = Mol /(g — 1) = X(Am,q)/q(q — 1). O

We calculate x(Ap,,t) as follows. Let ¢; (i = 1,...,m — 2) be primes sat-
isfying the conditions of Theorem 3.4. Count the number of points in the
set Mi(m,q;) for each i. By Theorem 3.5, we have x(Am,qi)/qi(q — 1) =
|Mi(m, ;)| Since x(Am,t)/t(t — 1) is a monic polynomial of degree m — 2, the
values |Mi(m,q;)| (i = 1,...,m — 2) determine the characteristic polynomial

X(Ama t)'

4 The number of ranking patterns for m <7

We use the results of the last section to determine x (A, t), |[Ch(A,,)| and r(m)
for m < 7. The case m = 3 is known because A3 = B3. Let m =4. If ¢ > 4 is
a prime, then Theorem 3.5 gives

% — |My(4,q)|.
Let (As, 1)
X 45
p(t) = tt—1)



Then p(t) is a monic quadratic polynomial. We let ¢; = 5, g2 = 7 and find
p(5) = [My(4,5)] = 0 and p(7) = [My(4,7)] = 8.
Theorem 2.6 and Corollary 2.7 give
p(t) =t>—8t+15=(t —3)(t —5), x(As,t) =t(t — 1)(t — 3)(t — 5),
|Ch(Ay)| =48, and r(4) = 2.
Using the same method, computer calculations provide the following table:

Theorem 4.1.

m X(Am, t) |Ch(An)| | r(m)
3 tt—1)(t—2) 6 1
4 t(t —1)(t — 3)(t — 5) 48 2
5 t(t —1)(t —7)(t — 8)(t — 9) 1440 12
6 t(t—1)(t — 13)(t — 14)(t — 15)(t — 17) 120960 | 168
7| t(t—1)(t — 23)(t — 24)(t — 25)(t — 26)(t — 27) | 23587200 | 4680

Corollary 4.2. Ifm <7, then the characteristic polynomial x (A, t) is a prod-
uct of linear factors in 7Z|[t].

Remark. Define a,, = n(n"~!—1)((n—2)!)/(n—1). We note that r(m) = a,,_2
for m = 3,4,5,6,7 but we do not have any reasonable interpretation for the
coincidence at this writing.

5 The number of ranking patterns for m > 8

In this section we determine 7(8) and prove a theorem about the characteristic
polynomial x (A, t) for m > 8.

For m = 8 we used a computer to count |M; (8, ¢)| with the primes ¢ = 223,
227, 229, 233, 239, 241, all greater than 8 - 337° = 216. Theorem 3.5 implies:

Theorem 5.1.

X(Ag, t) = t(t — 1)(t — 35)(t — 37)(t — 39)(t — 41)(t* — 85t + 1926),
|Ch(As)| = 9248117760,
7(8) = 229386.

Remark. The coincidence of r(m) and a,,—2 does not hold for m = 8. Here
r(8) = 229386 > ag = 223920.

Evaluating r(m) for m > 9 is not feasible at present with our brute-force
counting method. Improving the bound in Lemma 3.3 might reduce the com-
putational time. Computer experiments indicate that L(A,,) and L(A,, ,) are
isomorphic for much smaller ¢ than the value guaranteed by Lemma 3.3. It
may be interesting to investigate the growth of r(m) even if its values remain
unknown.

Next we consider the factorization problem. Write

m
X(Apyt) = pt™ .

k=0
It is known that

m m

Although we do not have a general formula for iy, routine calculations yield a
formula for ps:



Theorem 5.2.

m m m m m m
=2 15 120 375 630 315 .
ra=2((5) o) o (5) o) s on((7) ()
Theorem 5.3. The characteristic polynomial x( A, t) is a product of linear

factors in Z[t] if and only if m < 7.

Proof. This follows from Corollary 4.2 when m < 7. Let m > 8. Suppose that
the characteristic polynomial is a product of linear factors in Z[t]:

- zm:uktm—k = t(t — 1)(t —b2) ... (t — bp1)
k=0

for bo,...,by_1 € Z.
Applying Theorem 5.2, we have

el m m
bi:—/,l,l—1:|.Am|—1=—1+( )+3( ),
= 2 4

m—1
Y. bibj=pa- ) b
1=2

2<i<j<m—1 =
=1 (") () 2™
N 2 3 4

m m m m
12 1 .
+ 0<5) +375(6> +630(7) +3 5(8)
Therefore

m—1 m— 1 2 m_1b4 2
Z bi (21:2 z)
= < ) sz m—2
m—1 2 Tri_lbi ’
(5e) ez
i=2 2<i<j<m—1
2
(m=3) (X055 b
= TTE—Q ) -2 Z blb]

2<i<j<m—1

{
+12< ) + 120<m> +375< > +630<T:) +315<Tg>}

14 98m 1573m2  5423m3 12787m4 + 527mb B 391mS
3 16 48 192 24 96
19m?  m8
48 64"

Thus h(m) > 0 for m > 2. On the other hand, we may check by standard
calculus techniques that h(m) < 0 whenever m > 8. This is a contradiction. O
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6 Probabilities of ranking patterns

We counted the number of possible ranking patterns in the preceding sec-
tions. Here we investigate the probabilities of ranking patterns when the ob-
jects z1,...,%,, are randomly determined. For m = 4, the problem is trivial
by symmetry considerations as long as the four objects are independently and
identically distributed.

We consider the case m = 5 and assume that x = (x1,... ,25) € R? is dis-
tributed according to an arbitrary spherical distribution. Note that x € M (As)
with probability one. For m = 5, there are 1440 possible ranking patterns in
all. By relabelling the indices it suffices to consider the case

(1) xp < - < Ts.
Furthermore, by replacing x; by —x;, it suffices to consider the case
(2) < - <Xy, T2 < T15.

Under restriction (2), we have 1440/(5! - 2) = r(5)/2 = 6 possible ranking
patterns, which are characterized by the following midpoint orders (Lemma 2.3,
Theorem 2.4):

(I) @14 < w23 < w2y < 15 < Tas < T34,
(1) 214 < o3 < XTog < 15 < T34 < Tas,
(III) 214 < @og < T2g < T34 < T15 < T2s,
(IV)  Zo3 < 214 < T2q < T15 < Tos < T34,
(V) w3 < w14 < w24 < 215 < T34 < Tos,
(VI) o3 < 14 < Tog < T34 < T15 < Tos.

We are interested in the conditional probabilities of the six midpoint orders
above assuming (2). Recall that these midpoint orders represent chambers of A5
(Lemma 2.3). We argue next that our problem reduces to computing the spher-
ical volumes of the restrictions of some chambers of As to the three-dimensional
unit sphere.

We begin by recalling that all hyperplanes in As contain the line [ =
span{1} = {A\1 | A € R} C R5, where 1 € R® is the vector of 1’s. The or-
thogonal projection of x = (x1,...,25) € R® onto H) = I+ = {(21,... ,25) €
R® | 21 + -+ + o5 = 0} will be denoted by z := (1 — Z,... ,x5 — ), where
Z = (x1+---+x5)/5. Since x is assumed to be distributed as a spherical distri-
bution, the marginal distribution of the orthogonal projection z is a spherical
distribution of one less dimension (Muirhead [12, p.34]). Now, any x € M (As)
and its orthogonal projection z are on the same side of each hyperplane in As;,
so for any chamber C' € Ch(Aj;), we have Prob(x € C') = Prob(z € Cpy) with
C’Hé := C'N H{. This C’Hé can be regarded as a chamber of the arrangement

t:={HNH||He€ A5} in H|.

Each hyperplane in Af contains the origin. Thus its chambers are the
interiors of polyhedral cones in H). As a result, for each Cuy € Ch(A}),
we have that z € Cpy is equivalent to z/|z| € Cs = Cgy N S3, where
S* = {(x1,...,25) € Hy | 23+ --- + 2 = 1} is the unit sphere in HJ.
Together with the uniformity of the distribution of z/||z|| on S*, this yields
Prob(z € Cgy) = Prob(z/|z| € Css) = Vol(Css ) /Vol(S?).

We conclude that for any chamber C of As,

VOI(CSJ)

Prob (X S C) = W
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with Cgs = C'N'S?. Thus the probability of x being in chamber C' € Ch(As) is
proportional to the volume of Cgs = C N S3. Therefore, the desired conditional
probabilities under (2) are given by the ratios of the volumes of the chambers
Css corresponding to the six midpoint orders to the volume of the union 7' :=
{(w1,...,25) |21 < -+ < w5, T2g < 215} NS? of their closures.

The binding inequalities of the spherical chambers associated with the six
midpoint orders are

(I) 214 < w23, w25 < X34, T3 < Ty, Tog < T15,

(II) 215 < T34, T14 < X23, Tog < T15, T3 < T4, T34 < Tas,
(III) T14 < X23, T2 < T3, T3 < T4, T34 < T15,

(IV) 1 < 2, To5 < T34, Ta3 < T14, Toa < T15,

(V) 215 < @34, T23 < 14, Tog < T15, T34 < T25,

(VI) 1 < Tg, Tog < X3, T3 < T14, T34 < T15.

With the exception of (II), the closures of these chambers are spherical tetra-
hedra

() FBGH,
(I) AFED,
(IV) FBGC,
(V) CGFE,
(VI) AFCE

where

Chamber (IT) is a quadrilateral pyramid FEDHG, which can be divided into
two tetrahedra, say, FEDG and FFDGH. Note that this observation implies
that the closures of the chambers of the mid-hyperplane arrangement A, are
not necessarily simplices. See Figures 1 and 2.

The volumes of the seven spherical tetrahedra mentioned above can be com-
puted as

(I)  Vol(FBGH) = 0.00628091,

(II)  Vol(FEDG) = 0.00486715, Vol(FDGH) = 0.00481365,
() Vol(AFED) = 0.0189182,

(IV)  Vol(FBGC) = 0.0146084,

(V)  Vol(CGFE) = 0.00650684,

(VI) Vol(AFCE) = 0.0262516.

These values can be obtained by using Schléfli’s [15] result concerning partial
derivatives of the volume of a spherical tetrahedron with respect to its dihedral
angles. Note that these values add up to the volume of the spherical tetrahedron
T =ABCD = {(x1,...,25) €S* |21 < -+ < w5, T4 < 215} :

I(S*)  2n?
Vol(T) = v;(. 2) = o7 = 0.0822467.

12



Let S = {(1‘1,...

,o5) €S? |y < - < w5} Vol(S) = 2Vol(T). We use the

values above to arrive at

Prob((I) | S) :=

Prob(x14 < T3 < Ty < T15 < Tos < T34 |

<< x5)
_ Vol(FBGH)
Vol(S)
00628091
_ 000628091 ) 1ocieay.

2 x 0.0822467

By replacing x; by —x;, we also consider the following cases:

T3 < T14 < T15 < T2q < T34 < T25,

(I') @14 < 223 < T15 < Toa < Tza < Tas,
(") 214 < T15 < X23 < Tog < Tzg < Tas,
(IV") x93 < 214 < 15 < Taa < Tas < T34,
(V') 214 < 223 < 215 < Tog < T2s < T34,
(VI') 14 < @15 < Tag < Tag < Tas < T34.

Using the symmetry we get

Prob((I) | S) = Prob((') | S) 0.0381834,
Prob((I1) | §) = Prob((II') | §) = 0.0588522,
Prob((II1) | §) = Prob((II') | §) = 0.1150086,
Prob((IV) | §) = Prob((IV') | S) 0.0888085,
Prob((V) | S) = Prob((V') | S) 0.0395569,
Prob((VI) | §) = Prob((VI') | §) = 0.1595905.

We have confirmed that these values coincide with the result of our simulation
study with x ~ N5(0, I5), where I5 denotes the 5 x 5-identity matrix.
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