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Abstract

In the unidimensional unfolding model, given m objects in general
position on the real line, there arise 1 + m(m − 1)/2 rankings. The set of
rankings is called the ranking pattern of the m given objects. Change of
the position of these m objects results in change of the ranking pattern.
In this paper we use arrangement theory to determine the number of
ranking patterns theoretically for all m and numerically for m ≤ 8. We
also consider the probability of the occurrence of each ranking pattern
when the objects are randomly chosen.

Key words: unfolding model, ranking pattern, arrangement of hyper-
planes, characteristic polynomial, mid-hyperplane arrangement, spherical
tetrahedron.

1 Introduction

Various models have been developed for the analysis of ranking data in psy-
chology. These include Thurstonian models, distance-based models, paired
and higher-order comparison models, ANOVA-type loglinear models, multistage
models and unfolding models, see Marden [11]. The unfolding model was de-
vised by Coombs [3, 4, 5] for the analysis of ranking data based on preferen-
tial choice behavior. This model has been widely used in practice in many
fields beyond psychology: sociology, marketing science, voting theory, etc. In
addition, the same mathematical structure can be found in Voronoi diagrams
(Okabe, Boots, Sugihara and Chiu [13]), spatial competition models in urban
economics (Hotelling [9], Eaton and Lipsey [7, 8]) and multiple discriminant
analysis (Kamiya and Takemura [10]).
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According to the unidimensional unfolding model, preferential choice is made
in the following manner: all individuals evaluate m objects based on their single
common attribute. Each object is represented by a real number xi, measuring
the level of this attribute and viewed as a point on the real line R, the unidimen-
sional underlying continuum. At the same time, each individual is represented
by a point y on the same line, considered the individual’s preference and called
his/her ideal point. The model assumes that individual y ranks the m objects xi

according to their distances from y, so y prefers xi to xj iff |y−xi| < |y−xj|. We
say that the m points representing the objects are in general position if they and
their midpoints are all distinct. Further, we do not consider partial rankings or
ties in this paper, so we treat only those individuals whose ideal points do not
coincide with any midpoint of two objects.

Let x = (x1, . . . , xm) be m objects which satisfy these assumptions. By
varying the location of the ideal point y throughout R (except the midpoints),
we can account for

(
m
2

)
+1 rankings of x. The significance of using this model lies

here: there are m! potential rankings, but the psychological structure restricts
the variety of rankings that can actually occur. We call the set of

(
m
2

)
+ 1

rankings of x the ranking pattern of x. By considering different attributes, we
can get different sets of m real numbers x1, x2, . . . , xm for the same m objects,
and thus obtain different ranking patterns.

Suppose the objects are ordered as x1 < · · · < xm. In order to determine
the number of ranking patterns, we need to know the number of possible rank
orders of the midpoints xij = (xi + xj)/2, 1 ≤ i < j ≤ m. Any rank order
of the midpoints xij , 1 ≤ i < j ≤ m, must satisfy the condition that the
rank d(i, j) of xij from left to right on R be increasing in i for any fixed j as
well as increasing in j for any fixed i. Consider the number gm of functions
d : {(i, j) | 1 ≤ i < j ≤ m} → {1, 2, . . . , m(m − 1)/2} satisfying this condition.
Clearly gm serves as an upper bound for the number of possible rank orders
of the midpoints xij , 1 ≤ i < j ≤ m. Thrall [19] obtained this number by
considering a problem similar to that of counting the number of standard Young
tableaux. However, gm is only an upper bound, since the rank order of the
midpoints meeting the above-mentioned condition does not necessarily satisfy
other restrictions induced by the rank order of the objects.

In this paper, we use the theory of hyperplane arrangements to find the
number of possible rank orders of midpoints and thereby obtain the number
of ranking patterns generated by the unidimensional unfolding model. For the
general theory of hyperplane arrangements, see Orlik and Terao [14]. The orga-
nization of this paper is as follows. In Section 2, we define the mid-hyperplane
arrangement and show that the number of ranking patterns can be obtained
by counting the number of chambers of this arrangement. We give a formula
for the number of ranking patterns for all m in Corollary 2.7. Although this
provides a theoretical solution of our problem, explicit calculations are difficult.
In Section 3, we reduce the calculation to that of counting the number of points
in certain finite sets. Based on these results, we obtain the number of ranking
patterns for m ≤ 7 in Section 4 and for m = 8 in Section 5. We also show
in those sections that the characteristic polynomial of the mid-hyperplane ar-
rangement is a product of linear factors in Z[t] if and only if m ≤ 7. In Section
6, we consider the question of the probabilities of ranking patterns and give the
answer for m ≤ 5 objects. For m = 5 the problem reduces to that of finding
volumes of certain spherical tetrahedra.

Recently Stanley [16] considered a similar problem in the Minkowski space.
In this context this note deals with the “classical case.”
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2 Arrangements and ranking maps

In this section we interpret ranking maps and ranking patterns in terms of ar-
rangements. We define the mid-hyperplane arrangement and prove in Corollary
2.7 that the number of ranking patterns is expressed in terms of the character-
istic polynomial of this arrangement.

Let m be an integer with m ≥ 3. Define two sets of hyperplanes in the
m-dimensional Euclidean space R

m.

(I) Hij := {(x1, . . . , xm) ∈ R
m | xi = xj} (1 ≤ i < j ≤ m).

The hyperplane arrangement Bm := {Hij | 1 ≤ i < j ≤ m} is called the braid
arrangement [14, p.13]. It has |Bm| =

(
m
2

)
hyperplanes. Let

I4 := {(p, q, r, s) | 1 ≤ p < q ≤ m, p < r < s ≤ m, p, q, r, s are distinct}.
(II) Hpqrs := {(x1, . . . , xm) ∈ R

m | xp + xq = xr + xs}, (p, q, r, s) ∈ I4.

Define the mid-hyperplane arrangement

Am := Bm ∪ {Hpqrs | (p, q, r, s) ∈ I4}.

Here |Am| =
(
m
2

)
+ 3
(
m
4

)
. For an arbitrary arrangement A in R

m, let

M(A) := R
m \

⋃
H∈A

H

be the complement of A. The connected components of M(A) are called cham-
bers of A. Let Ch(A) be the set of all chambers of A.

Let Pm denote all permutations of {1, 2, . . . , m}. For π = (i1 . . . im) ∈ Pm, let
π̂ denote the corresponding bijection from {1, . . . , m} to itself: π̂(k) = ik (1 ≤
k ≤ m). In this way we have a one-to-one correspondence between Pm and the
symmetric group Sm, which is defined to be the set of bijections from {1, . . . , m}
to itself. The group Sm acts on the set Pm by

σπ := (σ(i1) . . . σ(im)) ∈ Pm

for σ ∈ Sm and π = (i1 . . . im) ∈ Pm. The action of Sm on R
m is defined by

σ(x1, . . . , xm) = (xσ−1(1), . . . , xσ−1(m)).

Then Sm acts on M(Am) and M(Bm) and therefore on Ch(Am) and on Ch(Bm).
It is well known (e.g., Bourbaki [2, Ch.5, §3, n◦2, Th.1]) that the symmetric

group Sm acts on Ch(Bm) effectively and transitively. In other words, for any
C,C′ ∈ Ch(Bm), there exists a unique σ ∈ Sm with C′ = σC. In particular,
|Ch(Bm)| = m!. Let

C0 := {(x1, x2, . . . , xm) | x1 < x2 < · · · < xm}
be a chamber of the braid arrangement Bm. Then Ch(Bm) = {σC0 | σ ∈ Sm}.

Fix x = (x1, x2, . . . , xm) ∈ M(Am). Plot m points x1, x2, . . . , xm on the real
line R. Let R(x) := R \ {xij | 1 ≤ i < j ≤ m}, where xij := (xi + xj)/2 is the
midpoint. Define a map

Rx : R(x) −→ Pm

as follows:

Rx(y) = (i1i2 . . . im) ⇐⇒ |y − xi1 | < |y − xi2 | < · · · < |y − xim |,
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where y ∈ R(x) and (i1i2 . . . im) ∈ Pm. The map Rx is called the ranking map.
The image of the ranking map Rx is the ranking pattern of x ∈ M(Am).

Suppose x ∈ C0 ∩ M(Am). Then x1 < x2 < · · · < xm. For y ∈ R(x) and
1 ≤ i < j ≤ m, we have

y < xij ⇐⇒ |y − xi| < |y − xj | ⇐⇒ i precedes j in Rx(y),

y > xij ⇐⇒ |y − xi| > |y − xj | ⇐⇒ j precedes i in Rx(y).

Imagine that the point y moves on the real line R from left to right. When y
is sufficiently small, Rx(y) = (12 . . .m). Every time y “passes” xij , the two
integers i and j, which are adjacent in Rx(y), switch their positions. When y
is sufficiently large, Rx(y) = (m . . . 21).

Example 2.1. Let m = 3 and x1 < x2 < x3. Then

Rx(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(123) if y < x12,

(213) if x12 < y < x13,

(231) if x13 < y < x23,

(321) if x23 < y.

Lemma 2.2. Let σ ∈ Sm, x ∈ M(Am) and y ∈ R(x). Then

Rσx(y) = σ(Rx(y)).

Proof. Suppose x = (x1, . . . , xm). Then

Rσx(y) = (i1 . . . im) ⇐⇒ |y − xσ−1(i1)| < · · · < |y − xσ−1(im)|
⇐⇒ Rx(y) = (σ−1(i1) . . . σ−1(im)) ⇐⇒ σ(Rx(y)) = (i1 . . . im).

Lemma 2.3. Let σ ∈ Sm and x,x′ ∈ σC0 ∩ M(Am). Then x and x′ lie in the
same chamber of Am if and only if the following statement holds true:

xpq > xrs ⇐⇒ x′
pq > x′

rs

for each (p, q, r, s) ∈ I4.

Proof. Each chamber of Am inside σC0 is equal to the intersection of σC0 and
half-spaces defined by either 2(xpq−xrs) = xp+xq−xr−xs > 0 or 2(xpq−xrs) =
xp + xq − xr − xs < 0 for (p, q, r, s) ∈ I4.

Theorem 2.4. Let σ ∈ Sm and x,x′ ∈ σC0 ∩M(Am). Then x and x′ have the
same ranking pattern if and only if x and x′ lie in the same chamber of Am.

Proof. Assume first that σ = 1, so x,x′ ∈ C0 ∩ M(Am). Suppose that x and
x′ lie in the same chamber of Am. Write x′ = (x′

1, x
′
2, . . . , x

′
m) and x′

ij :=
(x′

i + x′
j)/2 (1 ≤ i < j ≤ m). By Lemma 2.3, we have

xi1j1 < xi2j2 < · · · < xitjt , x′
i1j1 < x′

i2j2 < · · · < x′
itjt

,

where t =
(
m
2

)
. This shows

imRx = {π0, π1, . . . , πt} = imRx′ ,
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where π0, π1, . . . πt ∈ Pm are defined inductively by

π0 = (12 . . .m),
πs = [isjs]πs−1 (1 ≤ s ≤ t).

Here [ij] ∈ Sm (1 ≤ i < j ≤ m) denotes the transposition of i and j.
Conversely, assume imRx = imRx′ . For π = (i1i2 . . . im) ∈ Pm, let ι(π)

denote the number of inversions in π:

ι(π) := |{(k1, k2) | k1 < k2, ik1 > ik2}|.
As the point y moves on the real line from left to right, ι(Rx(y)) increases one
by one. So we may write

imRx = imRx′ = {π0, π1, . . . , πt}
such that ι(πs) = s (0 ≤ s ≤ t). Also there exists a unique transposition [isjs]
such that πs = [isjs]πs−1 (1 ≤ s ≤ t). Thus xi1j1 < xi2j2 < · · · < xitjt and
x′

i1j1 < x′
i2j2 < · · · < x′

itjt
. It follows from Lemma 2.3 that x and x′ lie in the

same chamber of Am.
For a general σ ∈ Sm, let y := σ−1x ∈ C0 ∩ M(Am) and y′ := σ−1x′ ∈

C0 ∩ M(Am). By Lemma 2.2,

imRx = imRx′ ⇔ σ−1(imRx) = σ−1(imRx′) ⇔ imRσ−1x = imRσ−1x′

⇔ imRy = imRy′ ⇔ y and y′ lie in the same chamber of Am

⇔ x and x′ lie in the same chamber of Am.

Let r(m) denote the number of ranking patterns when x runs over the set
C0 ∩ M(Am):

r(m) := |{imRx | x ∈ C0 ∩ M(Am)}|.
Note that for each σ ∈ Sm, |{imRx | x ∈ σC0 ∩ M(Am)}| is equal to r(m) by
Lemma 2.2.

Theorem 2.5. r(m) = |Ch(Am)|/(m!).

Proof. By Theorem 2.4, r(m) is equal to the number of chambers of Am which
lie inside C0. Thus we have |Ch(Am)| = r(m)|Sm| = r(m)(m!).

Now recall some general results about the number of chambers and the
characteristic polynomial [14]. Let K be a field and V an �-dimensional vector
space over K. Assume that A is an arbitrary arrangement of hyperplanes in V .
Let L = L(A) be the set of nonempty intersections of elements of A. An element
X ∈ L is called an edge of A. Define a partial order on L by X ≤ Y ⇐⇒ Y ⊆ X .
Note that this is reverse inclusion. Thus V is the unique minimal element of L.

Let µ : L → Z be the Möbius function of L defined by µ(V ) = 1, and for
X > V by the recursion ∑

Y ≤X

µ(Y ) = 0.

The characteristic polynomial of A is

χ(A, t) =
∑
X∈L

µ(X)tdim X .

Theorem 2.6 (Zaslavsky [20]). If K = R, then |χ(A,−1)| = |Ch(A)|.
We combine this result with Theorem 2.5:

Corollary 2.7. r(m) = |χ(Am,−1)|/(m!).
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3 The characteristic polynomial of Am

It follows from Corollary 2.7 that the number of ranking patterns is determined
by the characteristic polynomial χ(Am, t). Although this polynomial has a
simple definition and it is not hard to write a computer program to determine
it from the linear forms of the hyperplanes of Am, implementing the calculation
is a different matter. In this section, we use arrangements over finite fields to
simplify the calculation of χ(Am, t).

An arrangement A is called essential if the dimension of a maximal element
of L(A) is zero. The mid-hyperplane arrangement Am is not essential because
the line l = span{1} = {λ1 | λ ∈ R} ⊂ R

m, where 1 ∈ R
m is the vector of 1’s is

a maximal element. This implies that χ(Am, t) is divisible by t. The fact that
l is contained in every hyperplane of Am implies that χ(Am, t) is also divisible
by (t − 1). Thus χ(Am, t)/t(t − 1) is a monic polynomial of degree m − 2.

Let H0 be the hyperplane defined by x1 = 0. Define A∗
m := Am ∪ {H0}.

Then A∗
m is essential and the lattice L(Am) is isomorphic to the sublattice

defined by L(A∗
m)≥H0 := {X ∈ L(A∗

m) | X ≥ H0}.
The following theorem was essentially proved by Rota and Crapo in [6]. It

is found in this form in [17] (4.10) and [14] (Theorem 2.69) and was effectively
used by Athanasiadis (e.g., [1]).

Theorem 3.1. Let Fq be a finite field of q elements. If K = Fq, then χ(A, q) =
|M(A)|.

When K = Fq and V is a finite set of q� elements, χ(A, q) can be evaluated
by counting the number of points not on any hyperplane H ∈ A in V . Let q be
a prime number greater than m. Let A∗

m,q be the modulo q reduction of A∗
m in

(Zq)m. In other words, the hyperplanes belonging to A∗
m,q are:

(0) H0 := {(x1, . . . , xm) ∈ (Zq)m | x1 = 0},
(Iq) Hij := {(x1, . . . , xm) ∈ (Zq)m | xi = xj} (1 ≤ i < j ≤ m), and
(IIq) Hpqrs := {(x1, . . . , xm) ∈ (Zq)m | xp +xq = xr +xs}, (p, q, r, s) ∈ I4.

The arrangement A∗
m,q is essential. The modulo q reduction Am,q of Am

is composed of the hyperplanes of type (Iq) and (IIq) above. Note that the
lattice L(Am,q) is isomorphic to the sublattice defined by L(A∗

m,q)≥H0 := {X ∈
L(A∗

m,q) | X ≥ H0}. Therefore, the intersection lattices L(Am) and L(Am,q)
are isomorphic if L(A∗

m)≥H0 and L(A∗
m,q)≥H0 are isomorphic.

Let C be the coefficient matrix of A∗
m. For example when m = 4,

C =

⎛
⎜⎜⎝

1 1 1 1 0 0 0 1 1 1
0 −1 0 0 1 1 0 −1 −1 1
0 0 −1 0 −1 0 1 −1 1 −1
0 0 0 −1 0 −1 −1 1 −1 −1

⎞
⎟⎟⎠ .

Consider the m-minors of C. Each m-minor is parametrized by the set of
m columns used for the minor. It is known that the intersection lattice of
an essential arrangement is completely determined by the information which
m-minors vanish and which do not [18, Proposition 3]. Thus we have

Theorem 3.2. Define f(m) := max{| detT | | T is an m-minor of C and T
contains the column (1, 0, . . . , 0)T as its first column}. Let q be a prime number
greater than f(m). Then L(Am) and L(Am,q) are isomorphic.

Next we will find an upper bound for f(m). Let m ≥ 3 as always. Consider
the following three conditions concerning a matrix:

(i) every entry of the matrix is either −1, 0 or 1,
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(ii) in every column 1 appears at most twice,
(iii) in every column −1 appears at most twice.

Define

g(m) := max{| detA| | A is an (m − 1) × (m − 1)-matrix satisfying (i,ii,iii)}.
It is clear that f(m) ≤ g(m).

Lemma 3.3.

g(m) = 2m−2 for m ≤ 5, g(m) ≤ 8 · 3m−5 for m ≥ 6.

Proof. We argue by induction on m. For m = 3, 4 direct computation shows
the result. The values are attained by

g(3) = 2 = det
(

1 −1
1 1

)
, g(4) = 4 = det

⎛
⎝ −1 1 −1

−1 −1 1
0 1 1

⎞
⎠ .

Suppose m = 5. We show that g(5) = 8. Note that

det

⎛
⎜⎜⎝

1 1 1 1
1 −1 −1 1
0 −1 1 −1
0 1 −1 −1

⎞
⎟⎟⎠ = 8.

Thus g(5) ≥ 8. We must show g(5) = detA ≤ 8. Let ai be the ith column of A.
Denote the number of nonzero elements in ai by val(ai). If A has a column ai

with val(ai) ≤ 2, then g(5) ≤ 2g(4) = 8. So we may assume that 3 ≤ val(ai) ≤ 4
for every i. Define a∗

i to be the uniquely determined four-dimensional column
vector with two 1’s and two −1’s which satisfies the following property:

if val(ai) = 4, then a∗
i = ai,

if val(ai) = 3, then a∗
i is obtained from ai by replacing

the unique zero in ai by either 1 or −1.

For example,

if ai =

⎛
⎜⎜⎝

1
−1
0
−1

⎞
⎟⎟⎠ then a∗

i =

⎛
⎜⎜⎝

1
−1
1
−1

⎞
⎟⎟⎠ .

Since
(
4
2

)
/2 = 3 < 4, among the four vectors a∗

i (1 ≤ i ≤ 4) at least two are
either equal to or the negative of each other. Without loss of generality, we may
assume a∗

1 = a∗
2. Then a12 := a1 − a2 is composed only of 0,−1 and 1 with

val(a12) = 2. We get

g(5) = det A = det(a1,a2,a3,a4) = det(a1 − a2, a2, a3, a4)
= det(a12,a2,a3, a4) ≤ val(a12)g(4) = 2g(4) = 8.

For the induction step, assume m ≥ 6. Choose an (m− 1)× (m− 1)-matrix
A satisfying (i), (ii) and (iii) with detA = g(m). Use the Laplace expansion
formula along ai to get

g(m) ≤ val(ai)g(m − 1)

for each i. If val(ai) = 4 for every column ai of A, then all the rows sum
up to the zero vector and thus detA = 0. This is a contradiction. Therefore
we may assume that there exists a column ai with val(ai) ≤ 3; so we obtain
g(m) ≤ 3g(m− 1).
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Theorem 3.2 and Lemma 3.3 imply

Theorem 3.4. If a prime number q satisfies

q >

{
2m−2 if m ≤ 5,

8 · 3m−5 if m ≥ 6,

then the intersection lattices L(Am) and L(Am,q) are isomorphic and

χ(Am, q) = |M(Am,q)|.

The following theorem shows that we can fix x1 = 0, x2 = 1 in counting
|M(Am,q)|.
Theorem 3.5. Define

M1(m, q) := {(0, 1, x3, . . . , xm) ∈ M(Am,q)}.

Under the assumption of Theorem 3.4, we have

χ(Am, q)
q(q − 1)

= |M1(m, q)|.

Proof. Consider the action of the additive group Fq on M(Am,q) by

(x1, x2, . . . , xm) �→ (x1 + α, x2 + α, . . . , xm + α) (α ∈ Fq).

The set of orbits under this action is represented by the set

M0 := {(0, x2, x3, . . . , xm) ∈ M(Am,q)}.

Thus |M0| = χ(Am, q)/q. Next consider the action of the multiplicative group
F
×
q := F \ {0} on M0 by

(0, x2, . . . , xm) �→ (0, x2β, . . . , xmβ) (β ∈ F
×
q ).

The set of orbits under this action is represented by the set M1(m, q). Thus
|M1(m, q)| = |M0|/(q − 1) = χ(Am, q)/q(q − 1).

We calculate χ(Am, t) as follows. Let qi (i = 1, . . . , m − 2) be primes sat-
isfying the conditions of Theorem 3.4. Count the number of points in the
set M1(m, qi) for each i. By Theorem 3.5, we have χ(Am, qi)/qi(qi − 1) =
|M1(m, qi)|. Since χ(Am, t)/t(t− 1) is a monic polynomial of degree m− 2, the
values |M1(m, qi)| (i = 1, . . . , m − 2) determine the characteristic polynomial
χ(Am, t).

4 The number of ranking patterns for m ≤ 7

We use the results of the last section to determine χ(Am, t), |Ch(Am)| and r(m)
for m ≤ 7. The case m = 3 is known because A3 = B3. Let m = 4. If q > 4 is
a prime, then Theorem 3.5 gives

χ(A4, q)
q(q − 1)

= |M1(4, q)|.

Let

p(t) :=
χ(A4, t)
t(t − 1)

.
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Then p(t) is a monic quadratic polynomial. We let q1 = 5, q2 = 7 and find

p(5) = |M1(4, 5)| = 0 and p(7) = |M1(4, 7)| = 8.

Theorem 2.6 and Corollary 2.7 give

p(t) = t2 − 8t + 15 = (t − 3)(t − 5), χ(A4, t) = t(t − 1)(t − 3)(t − 5),
|Ch(A4)| = 48, and r(4) = 2.

Using the same method, computer calculations provide the following table:

Theorem 4.1.

m χ(Am, t) |Ch(Am)| r(m)
3 t(t − 1)(t − 2) 6 1
4 t(t − 1)(t − 3)(t − 5) 48 2
5 t(t − 1)(t − 7)(t − 8)(t − 9) 1440 12
6 t(t − 1)(t − 13)(t − 14)(t − 15)(t − 17) 120960 168
7 t(t − 1)(t − 23)(t − 24)(t − 25)(t − 26)(t − 27) 23587200 4680

Corollary 4.2. If m ≤ 7, then the characteristic polynomial χ(Am, t) is a prod-
uct of linear factors in Z[t].

Remark. Define an = n(nn−1 −1)((n−2)!)/(n−1). We note that r(m) = am−2

for m = 3, 4, 5, 6, 7 but we do not have any reasonable interpretation for the
coincidence at this writing.

5 The number of ranking patterns for m ≥ 8

In this section we determine r(8) and prove a theorem about the characteristic
polynomial χ(Am, t) for m ≥ 8.

For m = 8 we used a computer to count |M1(8, q)| with the primes q = 223,
227, 229, 233, 239, 241, all greater than 8 · 38−5 = 216. Theorem 3.5 implies:

Theorem 5.1.

χ(A8, t) = t(t − 1)(t − 35)(t − 37)(t − 39)(t − 41)(t2 − 85t + 1926),
|Ch(A8)| = 9248117760,

r(8) = 229386.

Remark. The coincidence of r(m) and am−2 does not hold for m = 8. Here
r(8) = 229386 > a6 = 223920.

Evaluating r(m) for m ≥ 9 is not feasible at present with our brute-force
counting method. Improving the bound in Lemma 3.3 might reduce the com-
putational time. Computer experiments indicate that L(Am) and L(Am,q) are
isomorphic for much smaller q than the value guaranteed by Lemma 3.3. It
may be interesting to investigate the growth of r(m) even if its values remain
unknown.

Next we consider the factorization problem. Write

χ(Am, t) =
m∑

k=0

µktm−k.

It is known that

µ0 = 1, µ1 = −|Am| = −
(

m

2

)
− 3
(

m

4

)
, µm = 0.

Although we do not have a general formula for µk, routine calculations yield a
formula for µ2:
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Theorem 5.2.

µ2 = 2
(

m

3

)
+ 15

(
m

4

)
+ 120

(
m

5

)
+ 375

(
m

6

)
+ 630

(
m

7

)
+ 315

(
m

8

)
.

Theorem 5.3. The characteristic polynomial χ(Am, t) is a product of linear
factors in Z[t] if and only if m ≤ 7.

Proof. This follows from Corollary 4.2 when m ≤ 7. Let m ≥ 8. Suppose that
the characteristic polynomial is a product of linear factors in Z[t]:

χ(Am, t) =
m∑

k=0

µktm−k = t(t − 1)(t − b2) . . . (t − bm−1)

for b2, . . . , bm−1 ∈ Z.
Applying Theorem 5.2, we have

m−1∑
i=2

bi = −µ1 − 1 = |Am| − 1 = −1 +
(

m

2

)
+ 3
(

m

4

)
,

∑
2≤i<j≤m−1

bibj = µ2 −
m−1∑
i=2

bi

= 1 −
(

m

2

)
+ 2
(

m

3

)
+ 12

(
m

4

)

+ 120
(

m

5

)
+ 375

(
m

6

)
+ 630

(
m

7

)
+ 315

(
m

8

)
.

Therefore

m−1∑
i=2

(
bi −

∑m−1
i=2 bi

m − 2

)2

=
m−1∑
i=2

b2
i −

(∑m−1
i=2 bi

)2

m − 2

=

(
m−1∑
i=2

bi

)2

− 2
∑

2≤i<j≤m−1

bibj −
(∑m−1

i=2 bi

)2

m − 2

=
(m − 3)

(∑m−1
i=2 bi

)2

m − 2
− 2

∑
2≤i<j≤m−1

bibj.

Compute

h(m) := (m − 2)
m−1∑
i=2

(
bi −

∑m−1
i=2 bi

m − 2

)2

= (m − 3)
{
−1 +

(
m

2

)
+ 3
(

m

4

)}2

− 2(m − 2)
{

1 −
(

m

2

)
+ 2
(

m

3

)

+12
(

m

4

)
+ 120

(
m

5

)
+ 375

(
m

6

)
+ 630

(
m

7

)
+ 315

(
m

8

)}

= 1 +
98m

3
− 1573m2

16
+

5423m3

48
− 12787m4

192
+

527m5

24
− 391m6

96

+
19m7

48
− m8

64
.

Thus h(m) ≥ 0 for m > 2. On the other hand, we may check by standard
calculus techniques that h(m) < 0 whenever m ≥ 8. This is a contradiction.
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6 Probabilities of ranking patterns

We counted the number of possible ranking patterns in the preceding sec-
tions. Here we investigate the probabilities of ranking patterns when the ob-
jects x1, . . . , xm are randomly determined. For m = 4, the problem is trivial
by symmetry considerations as long as the four objects are independently and
identically distributed.

We consider the case m = 5 and assume that x = (x1, . . . , x5) ∈ R
5 is dis-

tributed according to an arbitrary spherical distribution. Note that x ∈ M(A5)
with probability one. For m = 5, there are 1440 possible ranking patterns in
all. By relabelling the indices it suffices to consider the case

x1 < · · · < x5.(1)

Furthermore, by replacing xi by −xi, it suffices to consider the case

x1 < · · · < x5, x24 < x15.(2)

Under restriction (2), we have 1440/(5! · 2) = r(5)/2 = 6 possible ranking
patterns, which are characterized by the following midpoint orders (Lemma 2.3,
Theorem 2.4):

(I) x14 < x23 < x24 < x15 < x25 < x34,

(II) x14 < x23 < x24 < x15 < x34 < x25,

(III) x14 < x23 < x24 < x34 < x15 < x25,

(IV) x23 < x14 < x24 < x15 < x25 < x34,

(V) x23 < x14 < x24 < x15 < x34 < x25,

(VI) x23 < x14 < x24 < x34 < x15 < x25.

We are interested in the conditional probabilities of the six midpoint orders
above assuming (2). Recall that these midpoint orders represent chambers of A5

(Lemma 2.3). We argue next that our problem reduces to computing the spher-
ical volumes of the restrictions of some chambers of A5 to the three-dimensional
unit sphere.

We begin by recalling that all hyperplanes in A5 contain the line l =
span{1} = {λ1 | λ ∈ R} ⊂ R

5, where 1 ∈ R
5 is the vector of 1’s. The or-

thogonal projection of x = (x1, . . . , x5) ∈ R
5 onto H ′

0 = l⊥ = {(x1, . . . , x5) ∈
R

5 | x1 + · · · + x5 = 0} will be denoted by z := (x1 − x̄, . . . , x5 − x̄), where
x̄ = (x1 + · · ·+x5)/5. Since x is assumed to be distributed as a spherical distri-
bution, the marginal distribution of the orthogonal projection z is a spherical
distribution of one less dimension (Muirhead [12, p.34]). Now, any x ∈ M(A5)
and its orthogonal projection z are on the same side of each hyperplane in A5,
so for any chamber C ∈ Ch(A5), we have Prob(x ∈ C) = Prob(z ∈ CH′

0
) with

CH′
0

:= C ∩ H ′
0. This CH′

0
can be regarded as a chamber of the arrangement

A′
5 := {H ∩ H ′

0 | H ∈ A5} in H ′
0.

Each hyperplane in A′
5 contains the origin. Thus its chambers are the

interiors of polyhedral cones in H ′
0. As a result, for each CH′

0
∈ Ch(A′

5),
we have that z ∈ CH′

0
is equivalent to z/‖z‖ ∈ CS3 := CH′

0
∩ S

3, where
S

3 := {(x1, . . . , x5) ∈ H ′
0 | x2

1 + · · · + x2
5 = 1} is the unit sphere in H ′

0.
Together with the uniformity of the distribution of z/‖z‖ on S

3, this yields
Prob(z ∈ CH′

0
) = Prob(z/‖z‖ ∈ CS3) = Vol(CS3)/Vol(S3).

We conclude that for any chamber C of A5,

Prob (x ∈ C) =
Vol(CS3 )
Vol(S3)

11



with CS3 = C ∩ S
3. Thus the probability of x being in chamber C ∈ Ch(A5) is

proportional to the volume of CS3 = C ∩ S
3. Therefore, the desired conditional

probabilities under (2) are given by the ratios of the volumes of the chambers
CS3 corresponding to the six midpoint orders to the volume of the union T :=
{(x1, . . . , x5) | x1 ≤ · · · ≤ x5, x24 ≤ x15} ∩ S

3 of their closures.
The binding inequalities of the spherical chambers associated with the six

midpoint orders are

(I) x14 < x23, x25 < x34, x3 < x4, x24 < x15,

(II) x15 < x34, x14 < x23, x24 < x15, x3 < x4, x34 < x25,

(III) x14 < x23, x2 < x3, x3 < x4, x34 < x15,

(IV) x1 < x2, x25 < x34, x23 < x14, x24 < x15,

(V) x15 < x34, x23 < x14, x24 < x15, x34 < x25,

(VI) x1 < x2, x2 < x3, x23 < x14, x34 < x15.

With the exception of (II), the closures of these chambers are spherical tetra-
hedra

(I) FBGH,

(III) AFED,

(IV) FBGC,

(V) CGFE,

(VI) AFCE

where

A = (−1,−1,−1,−1, 4)/
√

20, B = (−3,−3, 2, 2, 2)/
√

30,

C = (−2,−2,−2, 3, 3)/
√

30, D = (−1, 0, 0, 0, 1)/
√

2,

E = (−7,−2,−2, 3, 8)/
√

130, F = (−4,−4, 1, 1, 6)/
√

70,

G = (−2,−1, 0, 1, 2)/
√

10, H = (−8,−3, 2, 2, 7)/
√

130;

Chamber (II) is a quadrilateral pyramid FEDHG, which can be divided into
two tetrahedra, say, FEDG and FDGH. Note that this observation implies
that the closures of the chambers of the mid-hyperplane arrangement Am are
not necessarily simplices. See Figures 1 and 2.

The volumes of the seven spherical tetrahedra mentioned above can be com-
puted as

(I) Vol(FBGH) = 0.00628091,

(II) Vol(FEDG) = 0.00486715, Vol(FDGH) = 0.00481365,

(III) Vol(AFED) = 0.0189182,

(IV) Vol(FBGC) = 0.0146084,

(V) Vol(CGFE) = 0.00650684,

(VI) Vol(AFCE) = 0.0262516.

These values can be obtained by using Schläfli’s [15] result concerning partial
derivatives of the volume of a spherical tetrahedron with respect to its dihedral
angles. Note that these values add up to the volume of the spherical tetrahedron
T = ABCD = {(x1, . . . , x5) ∈ S

3 | x1 ≤ · · · ≤ x5, x24 ≤ x15} :

Vol(T ) =
Vol(S3)
5! · 2 =

2π2

5! · 2 = 0.0822467.
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Let S = {(x1, . . . , x5) ∈ S
3 | x1 ≤ · · · ≤ x5} : Vol(S) = 2Vol(T ). We use the

values above to arrive at

Prob((I) | S) := Prob(x14 < x23 < x24 < x15 < x25 < x34 |
x1 < · · · < x5)

=
Vol(FBGH)

Vol(S)

=
0.00628091

2 × 0.0822467
= 0.0381834.

By replacing xi by −xi, we also consider the following cases:

(I′) x23 < x14 < x15 < x24 < x34 < x25,

(II′) x14 < x23 < x15 < x24 < x34 < x25,

(III′) x14 < x15 < x23 < x24 < x34 < x25,

(IV′) x23 < x14 < x15 < x24 < x25 < x34,

(V′) x14 < x23 < x15 < x24 < x25 < x34,

(VI′) x14 < x15 < x23 < x24 < x25 < x34.

Using the symmetry we get

Prob((I) | S) = Prob((I′) | S) = 0.0381834,

Prob((II) | S) = Prob((II′) | S) = 0.0588522,

Prob((III) | S) = Prob((III′) | S) = 0.1150086,

Prob((IV) | S) = Prob((IV′) | S) = 0.0888085,

Prob((V) | S) = Prob((V′) | S) = 0.0395569,

Prob((VI) | S) = Prob((VI′) | S) = 0.1595905.

We have confirmed that these values coincide with the result of our simulation
study with x ∼ N5(0, I5), where I5 denotes the 5 × 5-identity matrix.
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