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1 はじめに

先ごろ (2003年 6月)吉永正彦 (京大数理研院生) [Yo2] によって、Edelman-
Reiner予想が肯定的に解決された。喜ばしい一方で、予想をねらっていた者
のひとりとしては、自分が解決できなかったことには若干の悔しさもあるが、
Ziegler [Zi]によるmultiarrangementの自由性の概念を上手に用いた吉永の
証明手法は、Solomon-Terao [ST]において「予感」されていたものであり、
その意味では 1998年の [ST]から 2002年の [Te2]に向かうベクトルの延長線
上にあるとも言えよう。
以下、まず Edelman-Reiner予想とは何かを述べてから、吉永の与えた証

明の概略と手法についての解説をあたえる。

2 Edelman-Reiner予想とは何か？

Edelman-Reiner予想は任意のルート系がある種の幾何学的/組合せ的性質を
もつことを予想するものであり、1996年に [ER]の中で提出された。予想の
根拠は Shi [Sh1, Sh2], Stanley [Sta2], Athanasiadis [Ath1], Edelman-Reiner
[ER] らによる extended Shi/Catalan arrangements の Poincaré 多項式の
(case-by-case の)具体的計算結果であった。
以下、Edelman-Reiner予想を述べるのに必要な述語の準備をしよう。V

を �次元の実ユークリッド空間、Φをその中の既約ルート系とせよ。すなわ
ち、Φは以下のいずれかである。

A� (� ≥ 1), B� (� ≥ 2), C� (� ≥ 2), D� (� ≥ 3), E6, E7, E8, F4, G2.

Φ+で正ルートの集合を表す。各 α ∈ Φ+に対して、αに関する鏡映の鏡映面
Hαが決まる。すなわち

Hα := {x ∈ V | (α, x) = 0}
である。このとき hyperplane arrangement

A(Φ) := {Hα | α ∈ Φ+}
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は鏡映面の集合であり、Weyl arrangement と呼ばれる。以下、Weyl ar-
rangementに属する超平面を整数分だけ平行にずらしたアフィン超平面を考
える。すなわち α ∈ Φ+, k ∈ Z として、

Hα,k := {x ∈ V | (α, x) = k}
と定義する。この超平面を (やや記号の悪用だが) 単に {α = k} と表すこと
もある。p, q ∈ Z (p < q)に対して

A(Φ)[p,q] := {Hα,k | k ∈ Z, p ≤ k ≤ q, α ∈ Φ+}
という hyperplane arrangementを考える。このタイプの arrangements の内
で特にふたつのタイプのものを考えて、以下のように定義する。

定義１．A(Φ)[1−m,m] (m ≥ 1)を extended Shi arrangement とよぶ。
またA(Φ)[−m,m] (m ≥ 1)を extended Catalan arrangement とよぶ。

定義２．Aを V 内の hyperplane arrangementとする。Aに属する超平面
のすべての可能な intersectionsを集めて L(A)とおく。すなわち

L(A) := {
⋂

H∈B
H �= ∅ | B ⊆ A}.

(V も L(A)に含まれるとみなす。) X, Y ∈ L(A)に対して、X ≥ Y ⇔ X ⊆
Y として半順序を定義すれば、L(A) は半順序集合 (poset)になる。これを
intersection poset とよぶ。この順序に関して V は最小元である。次に A
のMöbius function µA とは L(A)上の整数値関数であって、以下の２条件
で特徴付けられるものである。

µA(V ) = 1,
∑

Z∈L(A)
V ≤Z≤X

µA(Z) = 0 (X �= V ).

このとき A のPoincaré 多項式 π(A, t) ∈ Z[t]は

π(A, t) :=
∑

X∈L(A)

µA(X)(−t)codim X

と定義される。

Shi [Sh1, Sh2]は、Φが A�型ルート系の場合に A(A�)
[0,1](これが元来の

Shi arrangement) を詳しく調べた。例として、Φが A2型ルート系の場合
の A+

2 と Shi arrangement A(A2)
[0,1] の図を次頁に画いておこう。
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A2型の Shi arrangement A(A2)
[0,1] は

(� + 2)2 = (2 + 2)2 = 16 の部屋をもつ
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定理１．(Shi 1986/87 [Sh1, Sh2]) Φが A� 型ルート系の場合の Shi
arrangement A(A�)

[0,1]は、(� + 2)�個の部屋 (chambers)をもつ。

以下の結果はすでに古典的である。

定理２．(Zaslavsky 1975 [Za]) V 内の hyperplane arrangement A は
π(A, 1) 個の部屋をもつ。

ここで、extended Shi arrangementsと extended Catalan arrangementsに
ついての組合せ的予想を述べる。(後述するように、吉永が証明した Edelman-
Reiner予想はこの予想よりさらに強い予想であるので、この予想はすでに肯
定的に解決されている。)

予想１. 既約ルート系 Φの exponentsを (d1, d2, . . . , d�)とし、hを Cox-
eter number とせよ。このとき

(i) (extended Shi arrangements)

π(A(Φ)[1−m,m], t) = (t + mh)�,

(ii) (extended Catalan arrangements)

π(A(Φ)[−m,m], t) =
�∏

i=1

(t + mh + di).

この予想と定理２より、A(Φ)[1−m,m]は (1+mh)�個の部屋をもち、A(Φ)[−m,m]

は
∏�

i=1(1 + mh + di) 個の部屋をもつことがわかるので、特に、定理１が
従う。この予想１は Headley [He], Postnikov-Stanley [PoSt], Athanasiadis
[Ath2, Ath3]などによって部分的には解決されていたが、吉永が証明を与え
るまで一般的な証明はえられていなかった。さて、Edelman-Reiner予想を述
べよう。

Edelman-Reiner予想.
(1) 任意の extended Shi arrangement A(Φ)[1−m,m] の coning* は free**

arrangementであって、その exponentsは (1, mh,mh, . . . , mh) (mhは � 回
現れる)である。

(2)任意の extended Catalan arrangement A(Φ)[−m,m]の coning*は free**
arrangement であってその exponents は (1, mh + d1, mh + d2, . . . , mh + d�)
である。

4



この文中の２つの述語については解説が必要であろう。

*) (coning) V = R� を１次元高い空間 W = R�+1 (座標を (x0, x1, . . . , x�) と
する)の中の � 次元 affine subspace {x0 = 1} として埋め込んでおく。H が
V 内の affine hyperplane とするとき、H の 0 (W の原点)上の cone を cH
で表す。Aが V 内の affine hyperplane arrangement とするとき、

cA := {{x0 = 0}} ∪ {cH | H ∈ A}
を A の coningとよぶ。cA は A より１枚多くの hyperplanes を含む W
内の hyperplane arrangementであり、cA のすべての hyperplanesは W の
原点 0 を通る。また、π(cA, t) = (1 + t)π(A, t) なる関係式は容易に見て取
れる。

**) (free arrangement) Aが V 内の hyperplane arrangementで、A に属す
る hyperplane はすべて V の原点を通るとせよ。S = S(V ∗) を V の双対空
間 V ∗ の対称代数とせよ。すなわち S は V 上の多項式関数全体のなす R-代
数である。このとき、

D(A) := {θ | θは Sから Sへの R-線型な微分であって
θ(α) ∈ αSが kerα ∈ Aなるすべての α ∈ V ∗について成立 }

という graded S-moduleを考える。(幾何学的には、これはAに沿った多項
式ベクトル場の集合である。) Aが free arrangementであるとは、D(A)
が free S-moduleであることをいう。Aが free arrangement であるとき、

D(A) 	 S(−d1) ⊕ S(−d2) ⊕ · · · ⊕ S(−d�) (S-graded modules として同型)

なる非負整数 d1, d2, . . . , d� を A の exponents とよぶ。K. Saito [Sa2] に
より、Weyl arrangement A(Φ)は free arrangementであり、その exponents
は Φ の通常の意味での exponents に等しいことが知られている。次の結果
は free arrangementが著しい組合せ的性質を持つことを示している。

定理３．(Factorization Theorem [Te1]) Aが free arrangement でそ
の exponentsが (d1, d2, . . . , d�) ならば、

π(A, t) =

�∏
i=1

(t + di).

したがって、もし、Edelman-Reiner予想が正しければ定理３より予想１
が従う。
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3 Edelman-Reiner予想の証明の概略

まず Ziegler [Zi] に始まる free multiarrangement の理論について述べる。
Multiarrangement B とは、各 hyperplane H ∈ B に multiplicity m(H) ∈
Z>0 が与えられているものである。通常の hyperplane arrangement A は
m(H) = 1 (∀H ∈ A)であると考えられる。D(A) の定義にならって

D(B) := {θ | θは Sから Sへの R-線型な微分であって

θ(α) ∈ αm(kerα)Sが kerα ∈ Aなるすべての α ∈ V ∗について成立 }

と定義する。(幾何学的には、これは B の各 hyperplane H に m(H)重に沿っ
た多項式ベクトル場の集合である。) Bが free multiarrangementである
とは、D(B)が free S-moduleであることをいう。Bが free multiarrangement
であるとき、B の exponents も通常の hyperplane arrangement の場合と
同様に定義される。
もっとも自然に multiarrangement が登場するのは hyperplane arrange-

ment の制限 (restriction)である。A を W = R�+1 の通常の hyperplane
arrangement とせよ。H0 ∈ Aに対して

AH0 := {K ∩ H0 | K ∈ A \ {H0}}

は H0 	 R� 内の hyperplane arrangementであるが、Y ∈ AH0 の multiplicity
m(Y ) を

m(Y ) := #{K ∈ A | K ∩ H0 = Y }

と定義すれば AH0 は multiarrangement とみなせる。
一方、H0 = ker(α0) となる α0 ∈ V ∗ をとって

D0(A) := {θ ∈ D(A) | θ(α0) = 0}

と定義すると

D(A) = S θE ⊕ D0(A)

となっている。ここで θE は Euler 微分とよばれ

θE =
�∑

i=0

xi(∂/∂xi)
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と座標表示される。自然な制限写像

ρ : D0(A) −→ D(AH0)

を考える。(ただし AH0 は multiarrangement とみなしている。)

定理４．(Ziegler [Zi]) A が W = R�+1 内の hyperplane arrangement
として、H0 ∈ A とし、B = AH0 とするとき、A が free arrangement で
exponentsが (1, d1, d2, . . . , d�)であるための必要十分条件は

1) 自然な制限写像 ρ : D0(A) −→ D(B)が全射であり、かつ、
2) B は free multiarrangement で exponents が (d1, d2, . . . , d�) であるこ

とである。

証明は Saito’s criterion [Sa1] とその multiarrangement version を用いる
ことによってえられる。
以上で multiarrangementについての準備を終えて Edelman-Reiner予想

の証明に入る。Φを既約ルート系、[p, q]を [1−m,m]と [−m,m] のいずれ
かとする。次の記号を用いる。

A = c
(A(Φ)[p,q]

)
, H0 = {x0 = 0}, B = AH0 (multiarrangement)

とする。Φの rankに関する帰納法で示す。まず rankΦ ≤ 2のときは A2, B2, G2

の場合に分けて直接に check される。以下、r = rank Φ > 2とせよ。一般に

Ax := {H ∈ A | x ∈ H} (Aの xでの局所化)

という記法を用いる。0 �= x = (0, x1, x2, . . . , x�) ∈ H0, x′ = (x1, x2, . . . , x�)
とするとき、

Ax =
(
c

(A(Φ)[p,q]
))

x
= c

(
(A(Φ)x′)[p,q]

)

は容易にわかる。ルート系の性質から A(Φ)x′は rank r未満のいくつかの既約
ルート系の直和として表せるので、帰納法の仮定から Axは free arrangement
としてよい。すると定理４より、x ∈ H0 \ {0} ならば、自然な制限写像の x
での局所化

ρx : D0(A)x −→ D(B)x

は全射である。よって、S = S(W ∗)-graded modules の完全列

0 −→ D0(A)
x0·−→ D0(A)

ρ−→ D(B)

7



の � 次元射影空間 P� 上の層化は層の短完全列

0 −→ D̃0(A)
x0·−→ D̃0(A)

ρ−→ D̃(B) −→ 0

を与える。(D̃(B) は H0 上に support をもつことに注意)
ここで次の結果を用いる。

定理５．([Te2]) k を正の整数とする。Weyl arrangement A(Φ) の各 hy-
perplane H に対してその multiplicity m(H) = k としてえられるmultiar-
rangementは free arrangementであり、次の exponents をもつ。

(i) k = 2m のときは (mh,mh, . . . , mh) (mhは � 回現れる),
(ii) k = 2m + 1 のときは (mh + d1, mh + d2, . . . , mh + d�).

定理５の original な証明はかなり複雑な計算で具体的に基底を構成する
のであるが、[Te3, Yo1]に、原始微分 (primitive integral)の Levi-Civita接続
を用いる別証明がある。
容易にわかるように B =

(
c

(A(Φ)[p,q]
))H0 は、Weyl arrangement A(Φ)

の各 hyperplane H に対してその multiplicity m(H) = q − p + 1 としてえ
られるmultiarrangement に他ならないので定理５を適用すれば free multi-
arrangementであって、予想される exponents をもつことがわかる。従って
定理４の条件 2)は成立していることがわかる。あとは定理４の条件 1)が確
かめられれば、Edelman-Reiner予想の証明が完了するが、それは、この頁の
上にある層の完全列から決まる long exact sequenceに標準的な cohomology
vanishing の議論を適用することによって確認できる。したがって帰納法が
進み Edelman-Reiner予想の証明が完了する。
帰納法を含めた証明の流れを図示すると以下のようになる。

• rank 2 の Edelman-Reiner予想 (個別に check)

• rank r − 1 の Edelman-Reiner予想 (rank r − 1 の global freeness)
=⇒ H0 の近くでの rank r の local freeness
=⇒ ρx は全射 (x ∈ H0 \ {0} )
=⇒ ρは全射 (by cohomology vanishing argument)

一方、B は multifree arrangement (by [Te2] )
=⇒ rank r の Edelman-Reiner予想 (by [Zi] )
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