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A CORRECTION TO “BASES OF THE CONTACT-ORDER
FILTRATION OF DERIVATIONS OF COXETER

ARRANGEMENTS”

HIROAKI TERAO

(Communicated by Jim Haglund)

Lemma 2.1 in this paper, published in Proc. Amer. Math. Soc. 133 (2005),
2029–2034, is not correct as it was stated. The correct statement and its proof are
as follows.

Lemma 2.1. For k ≥ 1 and ξ ∈ {ξ(1)
1 , . . . ξ

(1)
� }, we have

∇k
D ◦ ∇ξ −∇ξ ◦ ∇k

D = k ∇k−1
D ◦ ∇[D,ξ].

Proof. We use an induction on k. When k = 1, the lemma asserts

∇D ◦ ∇ξ −∇ξ ◦ ∇D = ∇[D,ξ],

which is the integrable property of the Levi-Civita connection ∇. Let k > 1. We
have

∇k
D ◦ ∇ξ = ∇k−1

D ◦ (∇ξ ◦ ∇D + ∇[D,ξ])

= (∇k−1
D ◦ ∇ξ) ◦ ∇D + ∇k−1

D ◦ ∇[D,ξ]

= (∇ξ ◦ ∇k−1
D + (k − 1)∇k−2

D ◦ ∇[D,ξ]) ◦ ∇D + ∇k−1
D ◦ ∇[D,ξ]

= ∇ξ ◦ ∇k
D + (k − 1)∇k−2

D ◦ ∇[D,ξ] ◦ ∇D + ∇k−1
D ◦ ∇[D,ξ]

by using the induction assumption. Let 1 ≤ i ≤ �. Since deg ξ(Pi) < 2(deg P�), we
have

[D, [D, ξ]](Pi) = D2(ξ(Pi)) = 0
and [D, [D, ξ]] = 0. So we obtain

∇D ◦ ∇[D,ξ] = ∇[D,ξ] ◦ ∇D.

This implies
∇k

D ◦ ∇ξ = ∇ξ ◦ ∇k
D + k ∇k−1

D ◦ ∇[D,ξ]. �
The theorems in the paper and their proofs are correct as they are.
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