Daisuke Shiraishi (Kyoto University, Japan)

Exact value of the resistance exponent for four dimensional random walk trace.

ABSTRACT: Let S be a simple random walk starting at the origin in \mathbb{Z}^4 . We consider $\mathcal{G} = S[0, \infty)$ to be a random subgraph of the integer lattice and assume that a resistance of unit 1 is put on each edge of the graph \mathcal{G} . Let R_n be the effective resistance between the origin and S_n . We derive the exact value of the resistance exponent; more precisely, we prove that $n^{-1}E(R_n) \approx (\log n)^{-\frac{1}{2}}$. Furthermore, we derive the precise exponent for the heat kernel of a random walk on \mathcal{G} at the quenched level. These results give the answer to the problem raised by Burdzy and Lawler¹ in four dimensions.

¹Burdzy, K.; Lawler, G. F.: Rigorous exponent inequalities for random walks. J. Phys. A: Math. Gen. 23 (1990): L23–L28.