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9.4. Find the volume of the region common to the intersecting cylinders x> + y* = a* and 4> + 2 = @®.

Required volume = 8 times volume of region shown in Figure 9.9
Jl_uj,ko a® - x? dydx

—8! (a —xz)dxul—qg——

As an aid in setting up this integral, note that z dy dx corresponds to the volume of a column such as shown

darkly shaded in Figure 9.9, Keeping x constant and integrating with respect to y from y=0to y = 1/(12 —

corresponds to adding the volumes of all such columns in a slab parallel to the yz plane, thus giving the volume
of this slab. Finally, integrating with respect to x from x = 0 to x = @ corresponds to adding the volumes of all
such slabs in the region, thus giving the required volume.

9.5. Find the volume of the region bounded by z=x+y z=6.x=0,y=0,z=0.

z

dy dx

Figure 9.10

Figure 9.9

Required volume = volume of region shown in Figure 9.10
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In this case the volume of a typical column (shown darkly shaded) corresponds to {6 — (x + y)} dy dx. The
limits of integration are then obtained by integrating over the region R of Figure 9.10. Keeping x constant and
integrating with respect to y from y =0 to y = 6 - x (obtained from z = 6 and z = x + y) corresponds to summing
all columns in a slab parallel to the yz plane. Finally, integrating with respect to x from x = 0 to x = 6 corre-
sponds to adding the volumes of all such slabs and gives the required volume.

Transformation of double integrals

9.6. Justify Equation (9), Page 225, for changing variables in a double integral.

In rectangular coordinates. the double integral of /(x, y) over the region Rt (shaded in Figure 9.11) is

j(F (%, y) dx dy. We can also evaluate this double integral by considering a grid formed by a family of u
R
and v curvilinear coordinate curves constructed on the region R, as shown in Figure 9.11.
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Figure 9.11

Let P be any point with coordinates (x, y) or (i, v), where x = f(u, ©) and y = g(i, v). Then the vector r
from O to p is given by r = xi + yj = f(u, V)i + g(u, V)j. The tangent vectors to the coordinate curves i = ¢, and
U = ¢, where ¢ and ¢, are constants. are dr/d v and dr/du, respectively. Then the area of region AR of Figure

dar_ or
91115 iven approximately by (— x —| Au Av .
given app y by TG
But
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The double integral is the limit of the sum
3. Flf @), g} 20 v
o(u,v)
taken over the entire region R. An investigation reveals that this limit is
J [t sum) = E 2
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where R is the region in the «v plane into which the region R is mapped under the transformation x = Flu,v),
= g(u, v). :
Another method of justifying this method of change of variables makes use of line integrals and Green’s
theorem in the plane (see Problem 10.32).

9.7. If u=x*—y* and v = 2xy, find d(u, V) in terms of u and v.
L) u, u| [2x -2y
9wV _ |1 Uy _ =4(x* + yY)
ax,y) P, V| [2y 2x

From the identity (1 + y*)* = (&% — y*)* + (2xy)*, we have
(x® +y*)? =u? +0° and x* +y* =i’ +0°
Then, by Problem 6.43,
a(x,y) 1 1 1
dwv)  00)/Axy) 4G +yP) 4\/ +v°

Another method:  Solve the given equations for x and y in terms of « and v and find the J acobian directly.

9.8. Find the polar moment of inertia of the region in the xy plane bounded by * - y* = 1, B=y=%xy=2,xy=
4, assuming unit density.

Under the transformation x* — y* = i, 2xy = v, the required region R in the xy plane, shaded in Figure
9.12(a), is mapped into region R of the wv plane, shaded in Figure 9.12(b). Then:
0(x, )
d(u,0)

[N LR

Required polar moment of inertia = ”(f +y)dxdy= '”()c2 +yh) du dv

where we have used the results of Problem 9.7.

™7 v
R él-dzr dv

{e1) (b}

Figure 9.12

Note that the limits of integration for the region R’ can be constructed directly from the region R in the
xy plane without actually constructing the region R’ In such case we use a grid, as in Problem 9.6. The coor-
dinates (u, v) are curvilinear coordinates, in this case called hyperbolic coordinates.
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9.9 Evaluate '”\/xz + y*dx dy, where R is the region in the xy plane bounded by +y?=4and 2 +y2 =9,
3

The presence of A” + y* suggests the use of polar coordinates (p. ¢), where x = p cos ¢, y = p sin ¢ (see
Problem 6.39). Under this transformation the region R [Figure 9.13(a)] is mapped into the region R’ [Figure

9.13(b)].
y ¢
',,-x"‘%yzf*}orp—*-.? 2l
PELET orp =12
dA = p dp dp b1 Y
..
d [ % 3 &
e%‘
(a) (b)
Figure 9.13
N
Since m= p, it follows that
a(p, )
[INE+y aray=[ [+ 1252 45 gy =[[ppad
R by a(P,q’) X’
e _mplp . =19, 38n
=[,.p7dp do = [ Bl o =y 5

We can also write the integration limits for R’ immediately on observing the region R, since for fixed 0.
p varies from p = 2 to p = 3 within the sector shown dashed in Figure 9.13(a). An integration with respect to
¢ from ¢ =0 to ¢ = 27 then gives the contribution from all sectors, Geometrically, p dp d¢ represents the area
dA, as shown in Figure 9.13(a).

9.10.  Find the area of the region in the xy plane bounded by the lemniscate p* = o° cos 20..

Here the curve is given directly in polar coordinates (p, ¢). By assigning various to ¢ and finding correspond-
ing values of p, we obtain the graph shown in Figure 9.14. The required area (making use of symmetry) is

%14 payoszy _rp?
ol pdpd¢—4_[’=n?p=0 do

/4
=a2
=0

/4 9 2 .
=2L_0a cos2¢ db = a’ sin2¢ ”
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Figure 9.14 Figure 9.15
Triple integrals

9.11. (a) Sketch the three-dimensional region R bounded by x +y +z=a{a > 0),x=0,y=0,z=0.(b) Give a
physical interpretation to

[[J o+ +2%)dx dy dz
R
(c) Evaluate the triple integral in (b).

(a) The required region R is shown in Figure 9.15.

(b) Since 22 + y? + 2% is the square of the distance from any point (, y, 2) to (0, 0, 0), we can consider the
triple integral as representing the polar moment of inertia (i.e., moment of inertia with respect to the ori-
g_in) of the region R (assuming unit density).

We can also consider the triple integral as representing the mass of the region if the density varies as
2+y+ 2
(c) The triple integral can be expressed as the iterated integral
[ 0708+ 5 2 dz dy d
x=04Jy=0 Jz=0 e y z = y

3 |a-s-y

CH

dy dx
3 Y

2=0

a a-x
= J z+y'z+
x=0Jy=0

=l : {a=x=yF
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The integration with respect to z (keeping x and y constant) fromz=0toz=a-x—y corresponds to
summing the polar moments of inertia (or masses) corresponding to each cube in a vertical column, The sub-
sequent integration with respect to y from y = 0 to y = a — x (keeping x constant) corresponds to addition of
contributions from all vertical columns contained in a slab parallel to the yz plane. Finally, integration with
respect to x from x = 0 to x = a adds up contributions from all slabs parallel to the yz plane.

Although this integration has been accomplished in the order z, y, x, any other order is is clearly possible
and the final answer should be the same.
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9.12.  Find (a) the volume and (b) the centroid of the region 9% bounded by the parabolic cylinder z = 4 — +* and the
planes x =0, y = 6, z = 0, assuming the density to be a constant &.

The region R is shown in Figure 9.16.

Figure 9.16

(a) Required volume = j“dx dy dz

=[ Lo dedyas
5 .L2=0 -[::D (4= x)dy dx
& .[io (4-x2)ylg=0d.x

=[" -6y ax=32

4-x?

(b) Total mass = J-j_u I;_ G dz dy dx =320 by (a), since G is constant. Then

=04Jz=0

2 6 pdx?
Total moment about yz plane _ .L=o _Lo _LO Cxdzdy dx 24

- 3
S Total mass Total mass 32 4

2 6 pdx?
— _ Total moment about xz plane _ .[MLO.LD Cydz dy dx _9%c _ 3
e Total mass B Total mass 32

2 p6 pdx®
r= Total moment about xy plane - L:o L:oLo Oz dz dy dx - 2566 /5 _ 8

Total mass Total mass 320 5

Thus, the centroid has coordinates (3/4, 3, 8/5).
Note that the value for ¥ could have been predicted because of symmetry.

Transformation of triple integrals

9.13. Justify Equation (11), Page 225, for changing variables in a triple integral.

By analogy with Problem 9.6, we construct a grid of curvilinear coordinate surfaces which subdivide the
region N into subregions, a typical one of which is AR (see Figure 9.17).
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9.14.

9.15.

9.16.

Figure 9.17

The vector r from the origin O to point P is
r=xi+yj+ 2k = flu, v, wi + g, v, w)j + hlu, v, wik

assuming that the transformation equations are x = f(u, v, w), y = glu, v, w), and z=h (u, v, w).
Tangent vectors to the coordinate curves corresponding to the intersection of pairs of coordinate surfaces
are given by dr/du, dr/dv, dr/dw. Then the volume of the region AR of Figure 9.17 is given approximately by

%-%x% Au Ao Aw = % Au AV Aw
The triple integral of F(x, y, z) over the region is the limit of the sum
3 F{f 0,0, 800w, 0, 222 v
o(u,0,w)
An investigation reveals that this limit is
9(x,y,2)

[ P10, w), 800, ), w0, W) du dv dw

o(u,0,w)

where R’ is the region in the wow space into which the region 9% is mapped under the transformation.
Another method for justifying this change of variables in triple integrals makes use of Stokes’s theorem
(see Problem 10.84).

What is the mass of a circular cylindrical body represented by the region0 < p £ .0 £ ¢ < 2r,0 gz
h, and with the density function pt = z sin* ¢?

hope2nope 4
M—_L Jﬂ L zsin“ ¢p dp dp dz=m
Use spherical coordinates to calculate the volume of a sphere of radius a.

aeni2 pni2 . 4
F= 8_[0 IO L a’sin®dr do do = Enag
Express H F(x, v, z)dx dydz in (a) cylindrical and (b) spherical coordinates.
£k

(a) The transformation equations in cylindrical coordinates are x = p cos ¢, y=p sin ¢, z=z.
As in Problem 6.39, 9(x, y, 2)/d(p, ¢, z) = p. Then, by Problem 9.13, the triple integral becomes

J.ﬂG(P,@,z)pdp do dz
where R’ is the region in the p, ¢,m z space cotresponding to R and where G(p, ¢, z= F(p cos ¢, p sin ¢, 2).




@____ CHAPTER 9 Multiple Integrals

(b} The transformation equations in spherical coordinates are x = r sin 8 cos ¢, y = 7 sin 8 sin ¢0.z=rcosH.
By Problem 6.101, (x, y, z)/d(5; 6, 0) = 1* sin 6. Then. by Problem 9.13, the triple integral becomes
_U H(r,8,0)r* sin® dr do do
L
where R’ is the region in the r, 8, ¢ space corresponding to R. and where H(r; 8, ¢) = F(r sin 8 cos ¢.
rsin 0 sin ¢, r cos 8).
9.17. Find the volume of the region above the xy plane bounded by the paraboloid z = x* + y* and the cylinder ® + 2 = 2.

The volume is most easily found by using cylindrical coordinates. In these coordinates the equations for
the paraboloid and cylinder are. respectively. z = p* and p = a. Then
Required volume = 4 times volume shown in Figure 9.18
ni2

N STTT

_ n/2 pa 3
= 4L=0 s oP'dp do

=4Jq”2p_4n d¢ =E_a4
hi=0 4 . 2

Figure 9.18

The integration with respect to z (keeping p and ¢ constant) from z=0to z = p? corresponds to summing
the cubical volumes (indicated by dV) in a vertical column extending from the xy plane to the paraboloid. The
subsequent integration with respect to p (keeping ¢ constant) from p = 0 to p = a corresponds to addition of
volumes of all columns in the wedge-shaped region. Finally, integration with respect to ¢ corresponds to add-
ing volumes of all such wedge-shaped regions,

The integration can also be performed in other orders to yield the same result.

We can also set up the integral by determining the region R’ in p, ¢, z space into which R is mapped by
the cylindrical coordinate transformation. )

9.18.  (a) Find the moment of inertia about the z axis of the region in Problem 9.17, assuming that the density is
the constant 6. (b) Find the radius of gyration.

(a) The moment of inertia about the z axis is

=4[] op e dp o

e - r2pfl . mdo
“40,’;,:0,[9:09 dp do = 40.[3]:0? dp = 3

p=0
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9.19.

The result can be expressed in terms of the mass M of the region, since, by Problem 9.17,

M=volumexdesnity=£a“cs so that [, —m——nivi?'—ﬂ—?:—:EMa
2 3 3 ma' 3

Note that in setting up the integral for I, we can think of ¢ p dz dp d¢ dz dp d¢ as being the mass of the
cubical volume element. p*c p dz dp di as the moment of inertia of this mass with respect to the z axis. and
_[U p’op dz dp dd as the total moment of inertia about the z axis. The limits of integration are determined

%

as in Problem 9,17.
2 2 f
(b) The radius of gyration is the value K such that MK® = EMaz; W Eﬂz ork = av2/3.

The physical significance of K is that if all the mass M were concentrated in a thin cylindrical shell of
radius K, then the moment of inertia of this shell about the axis of the cylinder would be I..

(2) Find the volume of the region bounded above by the sphere x* + y* + z* = @* and below by the cone 72
sin? o0 = (a7 + y*) cos? o, where o is a constant such that 0 < o < 7. (b) From the result in (a), find the
volume of a sphere of radius a.

In spherical coordinates the equation of the sphere is » = @ and that of the cone is 6 = o. This can be seen
directly or by using the transformation equations x = r sin @ cos ¢, y=rsin 8 sin ¢, z = r cos 0. For example,
2sin® 0= (2 + 1) cos 2 o becomes, on using these equations, 1> cos® 0 sin? o = (* sin® 8 cos” ¢ + r* sin? ©
sin® ¢) cos® o, i.e., * cos® O sin” 0. = 2 sin” O cos? ¢, from which tan 0 =+ tan o.and so @ = ccor @ =mw— 0. It
is sufficient to consider one of these—say, 8 = o

Figure 9.19

(a) Required volume = 4 times volume (shaded) in Figure 9.19

J. j_oj_or sin® dr do do

j J’ -—sme o do

-ij":: J’;Gsine o do

4a m/2 o |
T " —c0s9|0=0 do |
na’ }

= —3——(1 cosa.) ‘
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Foitins S

The integration with respect (o r (keeping € and ¢ constant) from = 0 to » = a corresponds to summing
the volumes of all cubical elements (such as indicated by dV) in a column extending from r = 0 to r = a. The
subsequent integration with respect to 6 (keeping ¢ constant) from = 0 to 8 = 7/4 corresponds to summing
the volumes of all columns in the wedge-shaped region. Finally, integration with respect to ¢ corresponds to
adding volumes of all such wedge-shaped regions.

(b) Letting o = 7, the volume of the sphere thus obtained is

2na’

4
(1-cosm) = E:'ta3

9.20. (a) Find the centroid of the region in Problem 9.19. (b) Use the result in (a) to find the centroid of a
hemisphere.

(a) The centroid (X, ¥, Z) is, due to symmetry. givenby ¥ = ¥ =0and

Total moment about xy plane _ ”ng0 dav

i

Total mass E ”JG dv
' Since z = r cos 0 and ¢ is constant, the numerator is
/2 po. p? 3 o ni2 po r4 A 7
4o j j rcosO -r”sin@ dr do do = 46! _[ —| sinBcosb db do
$=0J8=0Jr=0 $=0J0=0 4 2

=oda* _[:j J::o sin6 cos® d8 di

4 12
noa sin” o
do=—""1"
6=0

4

4 (72 Sif't29
e
=0 2

2
The denominator, obtained by multiplying the result of Problem 9.19(a) by o, is Enccﬁ (1 - cos ).
Then

i:"ccm4 sin®a,
paadao . —a(l+cosa.).
2 3
gnca (1—-cosat)

(b) Lettingt=m/2, % = %a.

Miscellaneous problems
Lt x=y —1 L ox—y _ 1
921 Prove that (a) [ {jﬂ Wdy} dx=—and ) {jﬂ e dx} dy=-=,
g x—-y Y 2x—(x+y)
@ [l alac [{[2E2)

o (x+y)

I 2x 1
J [(xﬂ')3 ) }fy}dx

=j‘L e '
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9.22.

(b) This follows at once on formally interchanging x and y in (a) to obtain

xX=y | | x—y ]_ ) . .
dx dy, dxt dy=—— and then multiplying both sides by —1.
e yL{Lmyf } S e

This example shows that interchange in order of integration may not always produce equal results, A suf-
ficient condition under which the 01'de1' may be interchanged is that the double integral over the corresponding

: ; . X—=
region exists. In this case ﬂ dxdy, where R is the region 0 < x < 1,0 <y < L, fails to exist be-

+y)’
cause of the discontinuity oI" the integrand at the origin. The integral is actually an improper double integral
(see Chapter 12).

Prove that _[;{ L{ F (u)du} dt = J ;(.r —u)F(u)de
Let I(x) = L‘)‘{ jo F(u)du}dt, J(x)= j;(.\-f W)F(u)du. Then

I'(y= [ Fadu, J'(0= [ Fdu

using Leibniz’s rule, Page 198. Thus, I'(x) = J'(x), and so I(x) = J(x) = ¢, where ¢ is a constant. Since K0) =
J(0) =0, ¢ =0, and so 1(x) = J(x).
The result is sometimes written in the form

jo J:F(x)dxz = J.:(x—u)F(u)du

The result can be generalized to give (see Problem 9. 38)

[oJ5f Pena = 1), —— [ (=)™ F(w)du

SUPPLEMENTARY PROBLEMS

Double integrals

9.23.

9.24,

9.25.

9.26.

9.27.

9.28.

(a) Sketch the region 9N in the xy plane bounded by y* = 2x and y = x. (b) Find the area of R. (c) Find the
polar moment of inertia of R, assuming constant density G.

Ans. (b) (c) 48G/35 = 72M/35, where M is the mass of R

Find the centroid of the region in problem 9.23,

——
Ans. x=—,y =1
5 y

Given J _‘- (x + v)dx dy, (a) sketch the region and give a possible physical interpretation of the double

integral, (b) interchange the order of integration, and (c) evaluate the double integral.

2 pd-y?
Ans. (b) .[. jy:l (x+y)dydx (c)241/60

4(m +2)

2 x . Tx 4 2 . Tx
Show that Llj‘:& sin oy dx + _‘;:2 L:J; sin 2—ydy dx = e

Y
Find the volume of the tetrahedron bounded by x/a + y/b + Z/c = 1 and the coordinate planes.
Ans. abcl6
Find the volume of the region bounded by z=x* + )%, z=0, x=—a, x=-a, y=-a,y =a.

Ans. 8a'/3
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