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If A = (3 - 6y2)i + (2y + 3x2)j + (1 — duyz2)k, evaluate JC A -dr from (0,1,1) to (1,1,1) along the
following paths C:

@ x=ny=£fz=F
{(b) The straight lines from (0, 0, 0) to (0, 0, 1), then to (0, 1, 1), and then to (1, 1, 1)
(¢) The straight line joining (0,0, 0) and (I, 1, 1)
LA -dr = jc{(3x2 - 6y2)i+ 2y +3x2)}j + (1 — 4xyz>)K} - (dxi + dyj + dzk)
= jc {(3x* = 6y2)dx + 2y + 3x2)dy + (1 - dxyz*)dz
(a) Ifx=1,y=r z=7, points (0,0, 0) and (1, 1, 1) correspond to r=0 and r = 1, respectively. Then
[ Acdr=]" Bt -6(" )t + (2 +30E)IE) + {1 - 4OE)E V)
=i ’=0{3z2 —6°)dt + (46 +66))dt + B> =128V )dr =2

Another method: Along C.A =32 -6 i+ 2F +3)j+ (1 -4k and r = xi + yj + zk = i + 12§ + Pk,
dr = (i + 2tj + 3°k)dr. Then

_[CA dr = J'Ol (3t* —6°)dt + (48 +6£°)dr +.(3¢* - 12tV )dr =2

(b) Along the straight line from (0, 0, 0) to (0, 1, 1), x=0, y = 0, dx = 0, dy = 0, while z varies from 0 to 1.
Then the integral over this part of the path is

[, B0 = 6010 + (200) + 30)@)0 + 1 - 4OYONHde = [ de=1

Along the straight line from (0, 0, 1) to (0, I, 1), x =0, z= 1, dx = 0, dz = 0, while y varies from 0 to 1.
Then the integral over this part of the path is

[} B0 60110+ 25 +3O)D]dy + {1 - 4ONW)0 = [ 2ydy=1

Along the straight line from (0, 1, 1), to (1, 1, 1),v=1,z=1, dy =0, dz = 0, while x varies from O to 1.
Then the integral over this part of the path is

j‘o {3x% = 6(1)(1)}dx + {2(1) +3x(1)}0 + {1 — 4x(1)(1)*}0 = j'n GBx* —6)dx=—5
Adding,
[ A-dx=1+1-5=-3
(c) The straight line joining (0, 0, 0) and (1. 1, 1) is given in parametric form by x =1, y =1¢, z= 1, Then
[ A-dr= Lo(yz — 6t df + (2t +3) dt + (1 — 4t ) dr =6/5

. . . . . Vv
Find the work done in moving a particle once around an ellipse C ;
in the xy plane, if the ellipse has its center at the origin with
semimajor and semiminor axes 4 and 3, respectively, as indicated

in Figure 10.7, and if the force field is given by

F=3x—dy+22)i + (dx + 2y - 329)j + 2xz — 4y? + 29k /

In the plane z = 0, F = (3x — 4y)i + (4x + 2y)j — 4y°k, and i B
dr = dxi + dyj, so that the work done is

rexi v
=d4costi+3singj

Figure 10.7
leF-dr = [ (Bx - 4y)i+ (4x +2y)j - 4y’ K} (di + dyj)

= j;c(:ax —4y)dx + (4x +2y) dy
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Choose the parametric equations of the ellipse as x =4 ¢os f, y = 3 sin 1. where ¢ varies from 0 to 27 (see
Figure 10.7). Then the line integral equals

j:) [3(4cost) — 4(3sint)} {—4sint}dt + {4(4cost) + 2(3sint)} (3eost)dr

t=0

= [*® (48 — 30 sin £ cos £)dt = (48¢ — 15 sin® r)|;" = 96n

In traversing C we have chosen the counterclockwise direction indicated in Figure 10.7. We call this the
positive direction or say that C has been traversed in the positive sense. If C were traversed in the clockwise
(negative) direction, the value of the integral would be —961.

10.4.  Evaluate _L y ds along the curve C given by y = 2\/; from x =3 to x = 24.

Since ds = yJdx? + dy* = |1 +(y)? dx = [+ 1/ x dx, we have
4

4
[yas=[" 2&,/1+1/xdx=2j3” x+lds =2 41| =156

3

Green’s theorem in the plane

10.5. Prove Green’s theorem in the plane if C is a closed curve which has the property that any straight line
parallel to the coordinate axes cuts C in. at most, two points.

Let the equations of the curves AEB and AFB (see Figure 10.8) be y = ¥|(x) and y = Y,(x), respectively. If
R is the region bounded by C, we have

op e 0P
(L= 120, Lo
Y, (x)

=Py dr= ['1PCx, ) = Px, ¥l

y=hix

= —J'r P(x,Y,)dx — J‘: P(x,Y,)dx = — dlcpdx
Then

P
j;Cdez—_ngdx dy | (1

o a b

Figure 10.8
Similarly, let the equations of curves EAF and EBF be x = X, (y) and x = X5(y), respectively. Then
I
122 ay= [
L ox

=J; o, ydy+ [ 0%, niv= |, 0d

sz(_\') 2dei|dy = be [Q(Xz., y) = Q(Xp y)]dy

=5 Ox
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Then
|00 - [Lasoy @
x®

Adding Equations (1) and (2),

Verify Green's theorem in the plane for

(.E: (xy — x*)dx + (x + y)dy

where C is the closed curve of the region bounded by y = x* and y* = x.

The plane curve y = +* and y* = x intersect at (0, 0) and (1, 1). The positive direction in traversing C is as
shown in Figure 10.9,

Along y =, the line integral equals

1 |
L_o{(Zx)(xz) - x*Ydx + {x + ) d(x?) = J.D @ +x* +2x)dx =716
Along y? =, the line integral equals
0 0
[ (@O =07 0D+ + %) dy = ["(y* ~25° +2y)dy =-17/15

Then the required line integral = 7/6 — 17/15 = 1/30,

H(g—g = g—;]dx dy= ﬂ{i;ix(x +yh) - {%(ny - xz)} dx dy
R R
- jj (1-2x)dxdy = j'ojf (1 - 2x)dydx
R

1 2
= LG (y- 2xy)|v=x2 dx

=J‘0](x”2 —2x*" —x* +2x*) dx=1/30

Hence, Green’s theorem is verified.

(1.1)

(¥

O

Figure 10.9

Extend the proof of Green’s theorem in the plane given in Problem 10.5 to the curves C for which lines
parallel to the coordinate axes may cut C in more than two points,

Consider a closed curve C such as is shown in Figure 10.10, in which lines parallel to the axes may meet
C in more than two points. By constructing line S7; the region is divided into two regions R, and %,, which
are of the type considered in Problem 10.5 and for which Green’s theorem applies, i.e.,

~[f[2€ _oP
ST_[]Sde+Qdy—&U[ax = )dxdy. (1)



CHAPTER 10 Line Integrals, Surface Integrals, and Integral Theorems .. o ,;@%y

10.8.

10.9.

jpd.x+Qdy jj[§§—a—P]dxd @)

SVTS a

0

Figure 10.10

Adding the left-hand sides of Equations (1) and (2). and omitting the integrand P dx + Q dy in each case,

efefe[e[of= ]~

STUS SVTS s TUS svr TUSVT

using the fact that I = - I
SsT s

Adding the right-hand sides of Equations (1) and (2), omitting the integrand, ”+ﬂ ﬁ where R con-

sists of regions N, and NR,. X%,
d
J Pdx+Qdy = ” —Q - B_P dx dy. and the theorem is proved.
TUSVT y

A region R such as is considered here and in Problem 10.5, for which any closed lying in 9 can be con-
tinuously shrunk to a point without leaving R, is called a simply connected. region. A region which is not
simply connected is called multiply connected. We have shown here that Green’s theorem in the plane applies
to simply connected regions bounded by closed curves. In Problem 10.10 the theorem is extended to multiply
connected regions.

For more complicated simply connected reglons it may be necessary to construct more lines, such as S7,
to establish the theorem.

Show that the area bounded by a simple closed curve C is given by % {:C xdy— ydx.

In Green’s theorem, put P = —y, Q = x. Then

] d
ch xdy—-ydx= "[‘J‘(é;(x) - g(—y)dedy = 2‘!;J.dxdy =2A

1
where A is the required area. Thus, A = 3 :[;Cx dy — y dx.

Find the area of the ellipse x = ¢ cos 0, y = b sin 0.

Area =% :FC xdy—ydx= %J-:E (a cos 0)(b cos 6)dO — (b sin 0)(—a sin 8)d0

=ljzn ab(cos® 8 +sin”0)dd =ljm abdd =wab
270 270
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10.10.  Show that Green’s theorem in the plane is also valid for a multiply connected region R such as is shown in
Figure 10.11.

The shaded region R, shown in Fi gure 10.11, is multiply connected, since not every closed curve lying in
R can be shrunk to a point without leaving R, as is observed by considering a curve surrounding DEFGD, for
example. The boundary of R, which consists of the exterior boundary AHJKLA and the interior boundary
DEFGD, is to be traversed in the positive direction, so that a person traveling in this direction always has the
region on his left. It is seen that the positive directions are those indicated Figure 10.11,

In order to establish the theorem, construct a line such as AD, called a crosscut, connecting the exterior
and interior boundaries. The region bounded by ADEFGDALKJHA is simply connected, and so Green'’s theo-
rem is valid. Then

¥

o
Figure 10.11
j Pax+Qay = a—Q——af]dxdy
ADEFGDALKJHA W o0x oy

But the integral on the left, leaving out the integrand, is equal to

[+ L+l ) =]
AD DEFGD DA ALKJTHA DEFGD ALKJHA

since LD = —jm. Thus, if C, is the curve ALKJHA, C, is the curve DEFGD, and C is the boundary of R

consisting of C, and C, (traversed in the positive directions), then jc + IC = IC and so
1 2

Q@ opP
{. Pdx+Qdy =!Tj[§%—$]dxdy

Independence of the path

10.11.  Let P(x, y) and Q(x, v) be continuous and have continuous first partial derivatives at each point of a simply

connected region R. Prove that a necessary and sufficient condition that J)C Pdx + Qdy=0 around every
closed path C in R is that IP/Jy = dQ/0x identically in R.

Sufficiency.  Suppose dP/dy = 0Q/dx. Then, by Green’s theorem,

: = (f[22 _2oP _
5’.,-Cde+Qdy—_g[ax adexdy—O

where R is the region bounded by C.

Necessity, Suppose :L:P dx + Qdy =0 around every closed path C in % and that dP/dy # d0Q/dx at some
point of R. In particular, suppose dP/dy — dQ/dx > 0 at the point (x;, y,).
By hypothesis, dP/dy and dQ are continuous in R, so that there must be some region T containing (x;, )
as an interior point for which dP/dy — 9Q/dx > 0. If T is the boundary of 1, then by Green’s theorem,
a0 oP

EFCde+Qdy =”(g-—gjdxdy>0
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10.12

10.13.

0 P
contradicting the hypothesis that E& Pdx+Qdy= U[_Q_?-)\_de dy >0 for all closed curves in in R,

Thus, dQ/dx — dP/dy cannot be positive.
Similarly, we can show that dQ/dx — dP/dy cannot be negative, and it follows that it must be identically
zero; i.e., dP/dy = dQ/dx identically in 9R.

Let P and Q be defined as in Problem 10.11. Prove that a necessary and sufficient condition that

R
L P dx + Q dy be independent of the path in R joining points A and B is that dP/dy = d Q/dx identically in R,

B

Figure 10.12

Sufficiency. If dP/dy = dQ/0x, then by Problem 10.11,
Pdx+Qdy=0
ADBEA
(See Figure 10.12.) From this, omitting for brevity the integrand P dx + Q dy, we have
[+]=0 [ ==] =] adso [ =]
ADB ADB AEB
i.e., the integral is independent of the path.

Necessity. If the integral is independent of the path, then for all paths C, and C, in R we have

R

ADB  AEB

From this it follows that the line integral around any closed path in R is zero, and, hence, by Problem 10.11
that dP/dy = 9Q/dx.

Let £ and Q be as in Problem 10.11. (a) Prove that a necessary and sufficient condition that P dx + Q dy be
an exact differential of a function ¢(x, y) is that dP/dy = dQ/ox. (b) Show that in such case

_[:de +Qdy= _[: dd =¢(B) —0(A) where A and B are any two points.

(a) Necessity. I[fPdx+Qdy=db= a¢ dx + a—¢dy, an exact differential, then
d0/ox = P : )
dd/dy =0 (2)

Thus, by differentiating Equations (1) and (2) with respect to y and v, respectively, dP/dy = dQ/dx, since we
are assuming continuity of the partial derivatives.

Sufficiency. By Problem 10.12, if dP/dy = dQ/dx, then IP dx + Qdy is independent of the path joining two
points. In particular, let the two points be (g, b) and (x, y) and define

(x.y)
dny)=[ " Pdx+Qdy
Then

(x+Ax, y) (X
00 +Any) =0 y)= [ " Pdx+Qdy- [ Pdr+Qdy

2 (‘”)‘“‘"’ Pdx+Qdy
Xy _)'
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Since the last integral is independent of the path joining (x, y) and (x + Ax, y), we can choose the path to be a

straight line joining these points (see Figure 10.13) so that dy = 0. Then, by the mean value theorem for inte-
grals,

PLr+Axy) -o(xy) 1

Ax Ax

Taking the limit as Ax — 0, we have J¢/dx = P.
Similarly, we can show that d¢/dy = 0.

L‘“+“”de=P(x+e At y)  0<8 <l

Xy}

Thus, it follows that Pdx + Qdy = a_¢dx + a—¢dy =db.
ox dy

¥

(x, ) (x+Ax, y)

{a, b)

Figure 10.13

(b) LetA=(x,y)andB=(x, ¥»). From (a),

(x,y)
o(x, y)=[m’) Pdx +Qdy.

Then, omitting the integrand P dx + Q dy, we have
B (X2, 12) (X 1) (S
o=l =Ja = Lo =00 3 =00k 30 =08 -0

3,4)
10.14.  (a) Prove that j:m (6xy* — vy dx + (6xy — 3xy%) dy dy is independent of the path joining (1, 2) and
(3, 4). (b) Evaluate the integral in (a).

(@) P=6xy2-y3, Q=06x2y-3xy2. Then dP/dy = 12xy — 3y2 = 9Q/dx and, by Problem 10,12, the line in-
tegral is independent of the path.

(b) Method 1:  Since the line integral is independent of the path, choose any path joining (1, 2) and (3, 4),
for example, that consisting of lines from (1, 2) to (3, 2) (along which y = 2, dy = 0) and then (3, 2) to
(3, 4) (along which x = 3, dx = 0). Then the required integral equals

|7 @4x-8)dx + |7 (54y—9y")dy =80 +156 =236
x= y=

P
Method 2:  Since a— = g—Q, we must have

dy ox
13gzﬁxzy—-iutyz (1
oy
o =6xy—3xy’ (2)
dy

From Equation (1), ¢ = 3x** - xy* + £(y). From Equation (2), ¢ = 32" — xy* + g(x). The only way in
which these two expressions for ¢ are equal is if f(y) = g(x) = ¢, a constant. Hence. ¢ =32y — xy* + c. Then,
by Problem 10.13.
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b

(34

J':m (6xy” — y")dx +(6x"y = 3xy*)dy = j(

5% )d(3x2y2 - Xy’ +¢)

1.2)
(3.4)
(1,2)

=3x%y’ — xy’ +c| =236

Note that in this evaluation the arbitrary constant ¢ can be omitted. See also Problem 6.16.
We could also have noted by inspection that
(6xy" = y")dx +(6x"y = 3xy")dy = (6xy’dx + 6x7y dy) - (¥’ dx + 3xy’dy)
=d@3x’y") -d(xy") =d(3x*y* - xy°)

from which it is clear that ¢ = 3.y —xy* + ¢.

10.15.  Evaluate J;(xzycosx +2xy sinx = y’e*)dx + (x* sin x — 2ye*)dy around the hypocycloid x23 +
L)
P =% cos x + 2xy sin x — y*e*, 0 = x> sin x — 2 ye'

Then 9P/dy = x* cos x + 2x sin .x — 2ye’ = d0/dx, so that, by Problem 10.11, the line integral around any

closed path—in particular, 7 + y*® = 4™ —is zero.

Surface integrals

10.16.  If yis the angle between the normal line to any point (x, y, z) of a surface S and the positive z axis, prove that
- JF2+F +F?
becyl=fl+gt +gb =Xl V. LE,
L ) IF|

according as the equation for §is z =f(x, y) or F(x, y, 2) =0.
If the equation for S is F(x, y, z) =0, a normal to § at (x, y, z) is VF = F\i + F,j + F k. Then

VF K=IVFlklcosy or F,=F!+F"+F?cosy
{F BB +F}

IF |
z
In case the equation is z = f(x, y). we can write F(x, y) = 0, from which F, = -z, F, - z,, F, = ] and we

find Isecyl= /1 +22 + 2

10.17. Evaluate ﬂ U(x, y,2)dS. where § is the surface of the paraboloid z = 2 — (x* + y*) above the xy plane
s

from which Isecyl= as required. as required.

and U(x, y, z) is equal to (a) 1. (b) % +y* y2, and (¢) 3z. Give a physical interpretation in each case. (See
Figure 10.14.)

The required integral is equal to B

[Juwpaft+2 +2dxay. (1

R

where R is the projection of S on the xy plane given
by +3y'=2,2=0.
Since z, = -2x, %, = -2y, (1) can be written

jjU(x, BN+ 4x7 + 4y*dx dy )

R

(a) IfUx,y,z)=1,(2) becomes

([T a7 rayas ¥
€

T dy

Figure 10.14




10.18.

CHAPTER 10 Line Integrals, Surface Integrals, and Integral Theorems
§

To evaluate this, transform to polar coordinates (p, ¢). Then the integral becomes
m V2 m 1 i 13n

1+4p? = (1% 4p2)? =
[iodyo¥1+ 407 pdp do=[7 = +4p%) s

Physically, this could represent the surface area of S or the mass of § assuming unit density.
(b) IfU(X, y,z)=x2+y2, (2) becomes ﬂ(xz + YW1+ 4x* +4y*dx dy or, in polar coordinates,
%
2 2 1491'5
3 2 o
-[¢=0 J'Mp J1+4p? dp do 50

where the integration with respect to p is accomplished by the substitution /1 + 4p2 =u.

Physically, this could represent the moment of inertia of S about the z axis assuming unit density, or the
mass of § assuming a density = x% + 2,
(c) IfU(x,y, z) =3z, (2) becomes

[[32\1+4x* + 4y dx dy=[[302-* + YW1+ 42 + 4y dx dy
%R ) R

or, in polar coordinates,

il 2 T ln
I¢:ojp=03p(2_|3 )de dq)_T

Physically, this could represent the mass of S assuming a density = 3z, or three times the first moment of
§ about the xy plane,

Find the surface area of a hemisphere of radius a cut off by a cylinder having this radius as diameter.

Equations for the hemisphere and cylinder (see Figure 10.15) are given, respectively, by 2% + y* + 72 = 42

(orz yJa® = x* = y*) and (x—al2)* + y* = a¥/4 (or 3 + y* = ).

Since

AT 2 _xz 2 and Z,= 2 _yz 2
\[a —Xx" -y \fa =Y

we have
[ J-.[ * 3 ” ’ 2 xZ y2 y

Two methods of evaluation are possible.

Figure 10.15
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Method 1:  Using polar coordinates.
Since x* + y? = ax in polar coordinates is p = a cos ¢, the integral becomes

acosd
do
p=0

2 :Ioz :c:w*za - pdpdd =2aj::—ﬁ
oo T )
=20* 7" (1 - sing)do = (m - 2)a?
: -

Method 2: The integral is equal to
a @ i .
——dx dy=2aJ' st do
faz R _yz x=0 e

@ X
=2af sin” ——
0 a+x

2-L=D -[v:ﬂ

y=0

Letting x = & tan” 0, this integral becomes

! A1 2 L
4azj *0 tan 0 sec? 00 = 44 —Btau"ﬁl(’{”ml-f " tan” 040
0 2 2 Jo
= 2(;2{6 tan® 0 [ —j:”(seczo L l)dﬁ)}

=2a’ {n/4 —(tan® -eng"‘}: (r-2)a’

RS

Note that these integrals are actually improper and should be treated by appropriate limiting procedures

(see Problem 5.74 and Chapter 12).

10.19.  Find the centroid of the surface in Problem 10.17.

szS ﬂz,!l +4x% + 4y dx dy

=8 5
[[zas~ [[Ji+ax +ay2ax ay
s %

The numerator and denominator can be obtained from the results of Problems |

: _ 3Im/10 111
respectively, and we thus have 7="—" — =_"—
13m/3 130

By symmetry, ¥ =y =0 and

10.20.  Evalute [[; A - n ¢S. where A = xyi =% + (x + 2k, S is that portion of the plane 2x + 2|
the first octant, and n is a unit normal to S, (See Figure 10.16.)

Anormalto § is V(2x+2y+z—6)=2i + 2j +k, and so
_ 2i+2j+k  2i+2j+k z
P24 3
Then
2i+2j+k
An={wi-xy+ (0 + k) - [L’;_*')

_2xy-2x" +(x+2)

0.17(c) and 10.17(a),

+ z = 6 included in

3
_2xy-2x" +(x+6-2x-2y)
3
_2xy-2x"—x-2y+6
3

Figure 10.16
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The required surface integral is, therefore,

H 2xy—2x2;x—2y+6 dS=” 2xy-—2x2;x—2y+6
s KA

1+2} +22dx dy

— 2— —
=f Gl i L 12 +2° + 22dx dy
R

3

3 3-x
=LDL=0 2xy-2x" = x =2y + 6)dy dx

3 3-x
=] ' —2xly—xy -y +6y) dax=27/4
14
10.21.  In dealing with surface integrals we have restricted ourselves to surface which are two-sided. Give an
example of a surface which is not two-sided.
AI |C
B

Figure 10.17

Take a strip of paper such as ABCD, as shown in Figure 10.17. Twist the strip so that points A and B fall

~on D and C, respectively, as in the figure. If n is the positive normal at point P of the surface, we find that as
n moves around the surface, it reverses its original direction when it reaches P again. If we tried to color only
one side of the surface, we would find the whole thing colored. This surface, called a Mébius strip, is an

example of a one-sided surface. This is sometimes called a nonorientable surface. A two-sided surface is
orientable,

The divergence theorem

10.22.  Prove the divergence theorem. (See Figure 10.18.)

( 8 iz=f (%)

Figure 10.18

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts S in, at most, two

points. Assume the equations of the lower and upper portions Sy and S, tobe z=f(x, ¥) and z = f,(x, y) respec-
tively. Denote the projection of the surface on the xy plane by R. Consider
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04, d ik
[ = [y acm [ 17 T v

= [[Ay 2, dy de = [[lAx 3 £) - A,y £ dy dx
%R R

For the upper portion S,. dy dx = cos ¥, dS, = k - n, dS, since the normal n, to S, makes an acute angle vy,

with k.
For the lower portion S|, dy dx =—cos ¥, dS, = -k - n, dS, since the normal n, to §, makes an obtuse angle
v, with k. ‘
Then
JJA3 (x,), f,) dy dx = HA_qk - n, dS,
] 5
[[AsGey, £y dy dx=—=[[ Ak m, s,
Ed 5,
and
[[ A,y 1) dy dx - [[ A,y £) dy dx = [[Ak - 0,08, + [[ A - m,as,
R R 5, 5
=[[Ak-nds
§
so that
94,
—dV=|| Ak -ndS 1
Jﬂ = ISI ; ()
Similarly, by projecting S on the other coordinate planes,
dA
m 1dV=HA3i-ndS 2)
s
d. ;
U‘[ﬁdv=ﬂfl3j -ndS %))
v oy §

Adding Equations (1). (2), and (3),

(S S B Jav  fni s s mas

or

jﬂv-Adv=jsjA.nds

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes meet
them in more than two points, To establish this extension, subdivide the region bounded by S into subregions
whose surfaces do satisfy this condition. The procedure is analogous to that used in Green’s theorem for the
plane.

10.23.  Verify the divergence theorem for A = (2x — 2)i + %yj — xz’k taken over the region bounded by x =0, x= 1, y
=0,y=1z=0,z=1

We first evaluate ﬁA -ndS, where § is the surface of the cube in Figure 10.19.
s

Face DEFG: n=i,x=1.Then
l i - . .
jj A-nds=j0j0{(2—z).+J—z2k}-1 dy dz

DEFG

:J.;_[;(Z—z)dydz=3/2
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Face ABCO: m=-i, x=0. Then
_” A-ndS= Ll _Ll (—zi) - (i) dy d7

ABCO
[ zdydz=1/2
—J-ojoz Jae =
Face ABEF: n=j, y=1.Then

[| Anas= ” {2 - 2)i+ xj - x°k)} j dx dz = Hx dx dz=1/3

ABEF

Face OGDC: n=-j,y=0. Then

_[j A-ndS= jj{(zx 2)i— xz°k}-(=j) dx dz =

oGDC

Figure 10.19

Face BCDE: n=Kk,z=1.Then
[[ Anas= jj{(zx Di + xyj — 2k} -k dx dy = Jjuxdxdy ~1/2

BCDE
Face AFGO: mn=-k, z=0. Then ;
[[ Amds =] [ 2xi-xyj}-(lo dx dy=0
AFGO 040

Adding,jA-nds=3+l+l+0—l+o=ﬂ. Since
. 20 3 g 6

mv Adv= j”(2+x — 2xz)dx dy d7 = 161

the divergence theorem is verified in this case.

10.24.  Evaluate HA ‘0 ds, where S is a closed surface.
S

By the divergence theorem,

j!r-ndS:jﬂV-rdv
2 Iﬂ[—w J+ikJ (xi + yj+ Zk)dV

b m[ i+ +—gik)dv=3wdv=3v

where V is the volume enclosed by §.
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10.25. Evaluate H xzidy dz +(x*y — 2°)dz dx + (2xy + y*z)dx dy, where § is the entire surface of the
s

hemispherical region bounded by z = \/az —x - y2 and z =0 (a) by the divergence theorem (Green’s
theorem in space) and (b) directly.

(a) Since dy dz = dS cos o, dz dx = dS dS cos P, and dx dy = dS cos v, the integral can be written

H{xzz cos & +(x"y —z*)cos B + (2xy + y*z) cos y}dS = HA ndS
5 S5

where A = x2% + (x%y — %) j + (2xy + y*2)k and n = cos i + cos [§j + cos vk, the outward drawn unit normal.
Then, by the divergence theorem the integral equals

J[[v-aav=]J] {a%(xzz)+aa—y<x2y—zs)+%(2w+yzz)}dv = [[J o +y* +22)av
v v Vv

where V is the region bounded by the hemisphere and the xy plane.
By use of spherical coordinates. as in Problem 9.19, this integral is equal to

2na’

J“n".“n] 2 r? sin® dr dO do =

(b) IfS, is the convex surface of the hemispherical region and S, is the base (z = 0), then

”xz dy dz = J.)_ GLO Zaa’ -y -7 dz dy- _[__J ey -7 dedx
foer-sravae L__J:;'*’ T - e

SN et P
[[ey-yzavay=]" jf_ R2ay+y*Jad -y —2* ) dy dx
5

szzdy dz =0, -U(xzy -2)dz dx =0,
5,

H(2xy ~y'7)dx dy= jj{zxy YOldedy=[" j = 20y dy dx =0

By addition of the preceding, we obtain

jﬁon_ va -y =7 dzdy+4j j mdzdx
& JOI Yiyla* —x* —y* dy dx

Since by symmetry all these integrals are equal, the result, on using polar coordinates, is

ljxoj_o yiat —x* =y dydx=

a.—-

Stokes’s theorem

10.26. Prove Stokes’s theorem.

Let S be a surface which is such that its projections on the xy, vz, and xz planes are are regions bounded
by simple closed curves, as indicated in Figure 10.20. Assume S to have representation z = f(x, y) or x =
g(y z)or y = h(x, z). where f, g. and /i are single-valued, continuous, and differentiable functions. We must
show that
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H(VxA)-n ds = [[IVX(Aj + Aj+AK)]'n dS
S §

= [ A-dr
C
where C is the boundary of S.
Consider ﬁrstﬂ[Vx(Ali)] -nds.
s

i j k
; . [0 9 9| 04, 04
S Vx(AD)=|— — — Lj——Lk,
SR O B B

A 0 0

Figure 10.20
04, 04,
Vx(Ai)] ndS = j——'n-k|dS
[Vx(AD] (az n-j > ] (hH
If z = f(x, y) is taken as the equation of S, then the position vector to any point of Sisr=xi + yj + zk = xi +
i+ f(x, y)k so that i =j+ % k=j+ = Bf k. But — is a vector tangent to .S and thus perpendicular to n,
oy dy oy ay
so that
n-gz—n J+~a-~nk 0 or n‘]=—%nk
dy dy 0

Substitute in Equation (1) to obtain
(%n. j_%n.k]dsz(éﬁa_zn.k o kjd

oz dy dz dy dy
or
; 0A, 0A, dz
Vx(AD] ndS=-| =L +—L—= |n-kdS
[Vx({AD]'n [ . + 5 ay]n ‘ 2
Nowon S, A, (x, y, 2) = A, [x, y, f(x, )] = F(x, ¥); hence, 04, +8A e aF and Equation (2) becomes
dy 0z dy By
oF oF

[V x(Ai)]- l‘ldS——mn kdS =——dxdy
dy dy
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10.27.

Then : 5
: F
[Jivxairnas=[f- 5 dvdy
s 9 y
where R is the projection of S on the xy plane. By Green’s theorem for the plane, the last integral equals

fl;r F dx where I is the boundary of <. Since at each point (x, y) of I" the value of F* is the same as the value

of A, at each point (x, y, z) of C, and since dx is the same for both curves, we must have
J Fde={§ A dx
r fe

or

ISI[V X (AD)]-ndS = }CA, d

Similarly, by projections on the other coordinate planes,

U[Vx(Azj)]-n as= | 4, dy, _[J[Vx(A3k)]-na‘S=J;CA3 dz

Thus, by addition,
H(VxA)-ndS::{, A- dr
5 c

The theorem is also valid for surfaces S which may not satisfy these imposed restrictions. Assume that §

can be subdivided into surfaces S|, S,, . . . S, with boundaries C|, C,, .. ., C,, which do satisfy the restrictions.
Then Stokes’s theorem holds for each such surface. Adding these surface integrals, the total surface integral
over § is obtained. Adding the corresponding line integrals over C,, C, . . ., C,, the line integral over C is ob-
tained.

Verify Stokes’s theorem for A = 3y i — xzj + yz%k, where S is the surface of the paraboloid 2z = % + y?
bounded by z =2 and C is its boundary. See Figure 10.21.

The boundary C of § is a circle with equations »* + y* = 4, z = 2 and parametric equations x =2 cos 7,y =
2sint, z=2, where 0 < < 2m. Then

Figure 10.21

§ A-dr= fF 3ydx—xzdy+yz'dz
c C
[V}
= jm 3(2sint)(=2sint)dt - (2cos 1)(2)(2cos £)dt

= [ (125in 1 + 8cos® dr = 207




10.28.

10.29.

%%%‘ CHAPTER 10 Line Integrals, Surface Integrals, and Integral Theorems

Also,
i J k
dJ 2 i
VxA= a 5}; éa; =(z"+x)i—-(z+3)k
3y —xz yz:2
and
_ Vi +y -27)  dityi-k
IV(x* +y* - 22) sz R
Then

jj(VxA).nds=H(V.A).n‘lif‘l‘g’zjj(xzz + 5 +z+3)dxd
s % : b

2 2
] gl Y +3}dxdy

Q)

In polar coordinates this becomes
w2 4 L) 3
L:OL=0{(p cos¢)(p*/2)+p*cos’d +p>/2+3)pdpdd = 20m
Prove that a necessary and sufficient condition that §CA -dr = 0 for every closed curve Cis that Vx A =0
identically.
Sufficiency. Suppose V x A = 0. Then, by Stokes’s theorem,
J.A-dr=[[(VxA)nds=0
5

Necessity. Suppose cch *dr =0 around every closed path C, and assume V x A # 0 at some point P, Then,

assuming V x A is continuous, there will be a region with P as an interior point, where V.x A # 0. Let Sbe a
surface contained in this region whose normal n at each point has the same direction as V x A;ie., Vx A =
om where ¢, is a positive constant. Let C be the boundary of S. Then, by Stokes’s theorem,

jﬁcA-drz ﬂ(VxA)-ndS:a”n- ndS >0
§ o

which contradicts the hypothesis that :’:C A dr =0 and shows that V x A = 0.

B
It follows that V x A = 0 is also a necessary and sufficient condition for a line integral j A.-dr tobe
: i 5 o 5 R
independent of the path joining points P, and B

Prove that a necessary and sufficient condition that V x A = 0 is that A = Vo.
Sufficiency. If A = V¢, then V x A = V x V¢ = 0 by Problem 7.80.
Necessity. If V x A =0, then by Problem 10.28, j A -dr = 0 around every closed path and I A-dr is
independent of the path joining two points, which we take as (a, b, c) and (x, y, 7). Let us define
. y,z) (X2
P, y,2) = j T Adr= j(w Adx + Aydy + Adz

(ab.c
Then

. (x+Ax,y,2)
O+ A%y =0(y2)=[ " Ade+ Ady + Adz
Since the last integral is independent of the path j Joining (x, y, z) and (x + A x, 3, z), we can choose the path

to be a straight line joining these points so that dy and d are zero. Then

¢ (x+ Ay -0(xyz) 1 J(Xw'-v-zl
Ax CAx

Adx=A(x+0Ax,y,7) 0<0 <1

X,3,2)
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10.30.

10.31.

where we have applied the law of the mean for integrals.
Taking the limit of both sides as Ax — 0 gives 0¢/0x = A,.
Similarly, we can show that dd/dy = A,. d¢/dz = A;. Thus,

A:A,i+A2j+A3k_m§?—1+—9‘|+—ﬂan¢
Tk dz

(a) Prove that a necessary and sufficient condition that A, dx + A, dy + A, dz = d¢, an exact differential, is
that V x A = 0 where A = A|i + A,j + A;k. (b) Show that in such case,

¢’ =¢(x2: yz’zz)—¢(x1vy|az|)

X2:¥2s2y (X2.72:2,)
j: ) 4 dy+ Aydy + Adz = j( o

g Yigp)

(@) Necessity. If Adx+Ady+ Adz=dp= 3-‘%& S0 a¢ dz, then
X

ay
g#i’= ) (1)
g—ﬁ= 2)
%} : 3)

Then, by differentiating, and assuming continuity of the partial derivatives, we have
A _ 4, A, _0A, A _0A,

dy o 9z dy dz ox
which is precisely the condition V x A = 0.

Another method: If A, dv + A, dy + A; dz = d¢, then

A=A,i+A2j+A3k=a—¢i+a—¢j+~a~ﬂk=ng.
dx  dy" oz

from which Vx A=V xVy=0.
Sufficiency. If V x A =0, then by Problem 10.29, A = V¢ and
a¢ % ,
Adx+A2dy+Adz A-dr=Vo -dr=—" dx+ afy+a 7 =dd
(b) From (a),
o(x,y,2) = AdX+A2dy+Adz

(a.b.c)

Then, omitting the integrand A, dx + A, dy + A; dz, we have

(62.3) (X+.¥2.22) )
J.( = " [( = (%55 ¥,%) = DXy, 91, 2,)

) (abe) «Iahe)
(a) Prove that F = (2xz” + 6y)i + (6x — 2y2)j + (3x*z* — ¥*) k is a conservative force field. (b) Evaluate_[ F-
dr where Cis any path from (1. -1, 1) to (2, 1, —1). (c) Give a physical interpretation of the results.
(a) A force field F is conservative if the line integral ch F - dr is independent of the path C joining any two
points. A necessary and sufficient condition that F be conservative is that V x F = 0,
i

J
. b5} d 2 .
Since here VxF= e 3 e =0, F is conservative
v

ox )
2xz° +6y 6x-2yz 3xizi -y’
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(b) Method 1: By Problem 10.30, F - dr = (2xz° + 6y)dx + (6x — 2yz)dy + (3x°2> — y¥)dz is an exact differ-
ential d¢, where ¢ is such that

90

—=2x7" +6y (1)
ox
B_q) =6x—-2yz (2)
dy
L Byt =y (3)
0z

From these we obtain, respectively,
' O =22+ 6xy +fi(n, 2
o= 6xy—y'z+f(x, 2)

o= -yz+fi(x )

These are consistent if fi(y, ) =~ y’z + ¢, f(x, 2) =z’ + ¢, and f; (x, y) = 6xy + ¢, in which case ¢ = °2’
+ 6xy — y’z + ¢. Thus, by Problem 10.30,

2,1-1
_[: 'Fodr= x*7 +6xy—yz+cl®D =15

1-1,1) (1,-1,1)
Alternatively, we may notice by inspection that
F - dr = (2xz2* dx + 3x°2% dz) + (6y dx + 6x dy) — Qyz dy + y* d2)
= d(x*z’) + d(6xy) — d(y*2) = d(x*3" + 6xy — ¥’z + ¢) from which ¢ is determined.
Method 2:  Since the integral is independent of the path, we can choose any path to evaluate it; in particular,

we can choose the path consisting of straight lines from (1, -1, I) to (2, —1, 1), then to (2, 1, 1) and then to
(2, 1, =1). The result is

2 1 -1
j (2x-6) dx+J' a2- 2y)dy+j (122 - 1dz =15
x= y= z=
where the first integral is obtained from the line integral by placing y = -1, z = 1, dy = 0, dz = 0; the second
integral, by placing x=2, z= 1, dx = 0, dz = 0; and the third integral, by placing x=2, y=1,dx=0, dy=0.

(c) Physically, JC F - dr represents the work done in moving an object from (1, -1, 1) to (2, 1, —I) along C. In
a conservative force field, the work done is independent of the path C joining these points.

Miscellaneous problems

10.32.  (a) If x = f(u, V), y = g(u, v) defines a transformation which maps a region %R of the xy plane into a region 9%’
of the v plane, prove that

I(x, y)

fl=a={5

(b) Interpret geometrically the 1'esult in (a).

(a) If C(assumed to be a simple closed curve) is the boundary of R, then by Problem 10.8,
1 .
[Jaxdy=={ xdy-ydx (1)
% 27

Under the given transformation, the integral on the right of Equation (1) becomes

1 dy dy dy ox 1 dy 0x ay ox
£ dut+2 o 98 o = [ [ 222 Y oSt I 2
2 Je [au o ) [aud”au 718 G PRl o Gt “
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10.33.

where C' is the mapping of C in the wv plane (we suppose the mapping to be such that C' is a simple closed
curve also).
By Green’s theorem, if R’ is the region in the wv plane bounded by C’, the right side of Equation (2)

equals
Teelof 9y ox) o dy ox ox dy ox dy
i ') el ITRGA S W o SOV I o SR s LR 204
zgau(xau yau) au[xau yau] || e
= 9(x.7) du dvo
s |0(w,0)

where we have inserted absolute value signs so as to ensure that the result is nonnegative, as is | J.g_“ dx dy.
In general, we can show (see Problem 10.83) that

[JFxyy dx dy = [[Ftf @), gav)) 3)
R R’

a(x,y)‘ dudn
o(u,v)

d(x,y)
) gdxdy sitd Q““*aﬁﬁ,ff)

ordinates, the second in curvilinear coordinates. See Page 225, and the introduction of the differential
element of surface area for an alternative to (a).

du dv represent the area of region R, the first expressed in rectangular co-

i
Let F= );1 X;" . (a) Calculate V x F. (b) Evaluate f]:F‘ - dr around any closed path and explain the results.
Xy
i j k
VxF= E g ai_ 0 in any region excluding (0,0)
(@) | oox dy 0z b
2 2 0
X4yt ey’

(b) }F-dr - ﬁM

x4y

dyx =

and so

-ydx=xdy
Xt +y

=d¢=d[aretanyj

psingdd +dpcosd, dy=pcosddd +dpsind

X

. Let x = p cos ¢, y = p sin ¢, where (p, ¢) are polar coordinates. Then

For a closed curve ABCDA [see Figure 10.22 (a)] surrounding the origin, ¢ =0 at A and ¢ = 2 after a
complete circuit back to A. In this case the line integral equals P“(, dh =2m.

[

?

A

{a)

0
D

g

P

0

Figure 10.22

()
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For a closed curve PORSP [see Figure 10.22(b)] not surrounding the origin, ¢ = ¢, at P and ¢ = ¢, after

%
a complete circuit back to P. In this case the line integral equals j i do=0.
by

Since F = Pi + 0j, V x F = 0 is equivalent to dP/dy = dQ/dx, the results would seem to contradict those

.. . . = X
of Problem 10.11. However, no contradiction exists, since P = _y2 and Q = P do not have con-
x4y x 4y

tinuous derivatives throughout any region including (0, 0), and this was assumed in Problem 10.11,

If div A denotes the divergence of a vector field A at a point P, show that

j j A ndS
div A = lim 4
Av=0 AV

where AV is the volume enclosed by the surface AS and the limit is obtained by shrinking AV to the point P.
By the divergence theorem,

[[JdivAav=[[Ands
AV AS
By the mean value theorem for integrals, the left side can be written
AV
where div A is some value intermediate between the maximum and minimum of div A throughout AV. Then

[[ A nas

divA=-
AV

Taking the limit as AV — 0 such that P is always interior to AV, div A approaches the value div A at point
P: hence,

[[A-nas
div A = lim &5
AV —0 AV
This result can be taken as a starting point for defining the divergence of A, and from it all the properties
may be derived, including proof of the divergence theorem, We can also use this to extend the concept of di-
vergence to coordinate systems other than rectangular (see Page 170).

Physically, (”IA -nds J/AV represents the flux or net outflow per unit volume of the vector A from
AS

the surface AS. If div A is positive in the neighborhood of a point P, it means that the outflow from P is posi-
tive, and we call P a source. Similarly, if div A is negative in the neighborhood of P, the outflow is really an
inflow, and P is called a sink. If in a region there are no sources or sinks, then div A =0, and we call A a sole-
noidal vector field.

SUPPLEMENTARY PROBLEMS

Line Integrals

10.35.

2 { g
Evaluate j(l : (x+y)dx+(y—x)dy along (a) the parabola ¥* = x, (b) a straight line, (c) straight lines from

(1, D to (1, 2) and then to (4, 2), and (d) the curve x =272 + 1+ 1, y=1>+ 1.

Ans. (a) 34/3 (b) 11 (c) 14 (d) 32/3
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