CHAPTER 8 Applications of Partial Derivatives

8.22.

8.23.

, e : AT 4, 5 ~2B+./4B* —4AC
First observe that solutions of the quadratic equation At~ +2Bt + C=0aret = A s
Further observe that the nature of these solutions is determined by B? — AC. If the quantity is positive, the

solutions are real and distinct; if negative, they are complex conjugate; and if zero, the two solutions are coin-
cident.
The expression B — AC also has the property of invariance with respect to plane rotations

x=Xcos0 —ysin0
y=XxcosH —ysinb
It has been discovered that with the identifications A = f,., B = f,,, C = f,,, we have the partial derivative
form f 2”, = fufyy that characterizes relative extrema.

The demonstration of invariance of this form can be found in analytic geometric books. However, if you
would like to put the problem in the context of the second partial derivative, observe that

i :fxg—;+_ i} %i:;fr cos® + f, sinf
f_,zfl,ng:Jr ,9%=—fx 8in® + f, cos®
9% 3 y

Then, using the chain rule to compute the second partial derivatives and proceeding by straightforward
but tedious calculation, we show that.

F2 = fuly = Foy ~ fafy

The following equivalences are a consequence of this invariant form (independently of direction in the
tangent plane at Pp):

f2 = fofy <0 andiofufyp=0 (1)

2 _
fx-v B ‘f-"-"’fy}' <0 and fx_tfyy <0 (2)

The key relation is (1) because in order that this equivalence hold, both terms f, f, must have the same
sign. We can look to the one-variable case (make the same argument for each coordinate direction) and con-
clude that there is a relative minimum at P, if both partial detivatives are positive and a relative maximum if
both are negative. We can make this argument for any pair of coordinate directions because of the invariance
under rotation that was established. .

Tf relation (2) holds, then the point is called a saddle point. If the quadratic form is zero, no information
results.

Observe that this situation is analogous to the one-variable extreme value theory in which the nature of f
at x, and with 7(x) = 0, is undecided if f“(x) = 0.

Find the relative maxima and minima of f (x, y) = 24y - 3x— 12y +20.

f.=3x*—3 =0 when x = £1, f, = 3y’ — 12 = 0 when y = *2. Then critical points are P(1, 2), O(-1, 2),
R(1,-2), S(-1,-2).

fu=6x,f,,=0.Then A=f. f, —f?y = 36xy.

AtP(1,2), A>0and f,, (or f,) > 0; hence P is a relative minimum point.

At O(=1, 2), A < 0 and Q is neither a relative maximum or minimum point.

At R(1,-2), A <0 and R is neither a relative maximum or minimum point.

At 8(=1,-2), A>0andf, (orf,)<0so0S is a relative maximum point.

Thus, the relative minimum value of f{x, y) occurring at P is 2, while the relative maximum value occur-
ring at § is 38. Points O and R are saddle poins.

A rectangular box, open at the top, is to have a volume of 32 cubic feet. What must be the dimensions so that
the total surface is a minimum?



a——

If %, y, and z are the edges (see Fig. 8.7), then
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Volume of box = V = xyz = 32 (1

Surface area of box = § = xy + 2yz + 2xz 2)
or, since z = 32/xy from Equation (1), ~ REMaRRE, 1M 7is Ohse x £0 aus y{o
Fig. 8.7
—g£=y—6—j=OWhen x’y=64 3)
X X
g—S=x~—6—j:0whenxy2=64 (€Y)
¥ y

Dividing Equations (3) and (4), we find y=xsothatx’=64orx=y=4dandz =2,

128 1 128
e e Y R
xy (x3 J[ E

dimensions 4 feet x 4 feet x 2 feet give the minimum surface,

Forx=y=4,A=5_§

X yy

i} > 0. Hence, it follows that the

—1>0ands,,
x

Lagrange multipliers for maxima and minima

8.24. Consider F(x, y, z) subject to the constraint condition G(x, y, z) = 0. Prove that a necessary condition that
F(x, y, 7) have an extreme value is that FG,-F,G, =0.
Since G{x, y, z) = 0, we can consider z as a function of x and y—say, z=f(x, y). A necessary condition that
Flx, y, f(x, ¥)] have an extreme value is that the partial derivatives with respect to x and ¥ be zero. This gives
Fx + Fzzx =0 (1)
F,+FZ,=0 @)
Since G(x, y, &) = 0, we also have
G.+Gz,=0 3
G, +Gz,=0 4)
From Equatigns (1) and (3) we have
ExG.\ o FYGl =0 (5
and from Equations (2) and (4) we have
FG,-FG =0 (6)
Then from Equations (5) and (6) we find B~ F.G.=0.
These results hold only if F, # 0, G, # 0.
8.25. Referring to Broblem 8.24, show that the stated condition is equivalent to the conditions ¢, = 0, ¢, = 0 where
¢ =F + LG anfd A is a constant.
g =0,|F, +AG, =0.1f ¢, =0, F, + LG, = 0. Elimination of )\ between these equations yields .G, —
F,G,=0.
o At
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8.26.

8.27.

The multiplier A is the Lagrange multiplier. If desired, we can consider equivalently ¢ = AF + G where
4, =0,9,=0.

Find the shortest distance from the origin to the hyperbola x* + 8xy + Tyt =1225,z=0.

We must find the minimum value of x* + y* (the square of the distance from the origin to any point in the
xy plane) subject to the constraint ¥+ 8xy + Ty? =225,

According to the method of Lagrange multipliers, we consider & = x + 8xy + Ty* — 225 + A< +¥7).
Then

¢x=2x+8y+27\.x=0 or (A+Dx+4y=0 (1
¢, =8x+ 14y +24hy=0 or . 4x+(A+Ty=0 2)

From Equations (1) and (2), since (x, y) # (0, 0), we must have
: A+l 4

=0, Le.. A2 +8A—-9=or A=1,-9
/Ry Vo

Case 1- )= 1. From Equation (/) or (2), x =2y, and substitution in x* + 8xy + Ty* = 225 yields —5y* = 225,
for which no real solution exists.

Case 2: ) =-9. From Equation (/) or (2), y = 2x, and substitution in x2 + 8xy + 7y* = 225 yields 45x* = 225.
Then % = 3, y* = 4x* = 20 and s0 ¥* +y? = 25. Thus, the required shortest distance is 4/25 =5.

(a) Find the maximum and minimum values of x* + y? + 2% subject to the constraint conditions 4+ Y25+
225=1andz=x+y.(b) Give a geometric interpretation of the result in (a).

2 2
. ; o x X
(a) We must find the extrema of F = 2 + )% + 22 subject to the constraint conditions ¢ =—- +-? +
2
4 . - .
5 1=0 and ¢, =x+y—z=0.In this case we use two Lagrange multipliers A, A, and consider
the function

2 2 2
G=F+Mhy+My =22+ +22 + ) {%—-+—}15—+~;—5—1]+12(x+y—z)

Taking the partial derivatives of G with respect to x, y, z and setting them equal to zero, we find

A 2\, 2\,
G, =2x+ % 10,20, G, =2+ 4k, =0, G, =2z + =22k =0 ()
2 5 25
Solving these equations for x, y, z, we find
-2k, 5K, 25M,

x=— = ; e 2
nrd DT +100 ST 50 @

From the second constraint condition, x +y —z=0, we obtain, on division by A,, assumed different from
zero (this is justified, since otherwise we would have x =0, y = 0, z = 0, which would not satisfy the first con-
straint condition), the result

2 S 25
- 4t ———=0
A +4 20 +10 24 +50
Multiplying both sides by 2(A; + 4)(\, + 5)(\, + 5)(\, + 25) and simplifying yields

172, + 245X, + 750 = 0 or (A, + 10)(17A, +75) =0

from which A, =-10 or =75/17.
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Case I: N, =-10.
From (2),x= 1 &, y= A ho 26N, Substituting in the first constraint condition, x%/4 + Y2 IS5 + 2425
= 1, yields A%, = 180/19 or &, = +6/5/19 . This gives the two critical points

(2\/5/19,3\/5/19,5\/5/19) (—2«/5/19,4\/5/19,—5\/5/19)

The value of x? + )2 + 72 corresponding to these critical points is (20 + 45 + 125)/19 = 10.

Case 2: )\, =-75/17.
From (2), x = 34/7 Ay = =17/4%,, z = 17/28),. Substituting in the first constraint condition, x4 + y¥/5
+2%25 = 1, yields A, = £140/(17 /646 ) which give the critical points

(40 /646 , -35./646 , 5 1646 ) (40 1646 , -35\/646 , - 5/./646 )

The value of x* + 2 + 22 corresponding to these is (1600 + 1225 + 25)/646 = 75/17.
Thus, the required maximum value is 10 and the minimum value is 75/17.

(b) Since x* +y? + 2% represents the square of the distance of (x, y, z) from the origin (0, 0, 0), the problem is
equivalent to determining the largest and smallest distances from the origin to the curve of intersection of
the ellipsoid x%/4 + y*/5 + z/25 = 1 and the plane z = x + y. Since this curve is an ellipse, we have the
interpretation that V10 and V75/17 are the lengths of the semimajor and semiminor axes of this el-
lipse.

The fact that the maximum and minimum values happen to be given by -, in both Case 1 and Case 2 is
more than a coincidence. It follows, in fact, on multiplying Equations (1) by x, y, and z in succession and add-
ing, for we then obtain

A x? 22, y? p W
2x2+—1—2x_+12x+2y2+—)~15L+lzy+2z2+—215iklgz:0

ie.,
2

2 2 2
2 PIE ) x Vs 008
Y AN [t [, (xty—2)=0
£ Ty w2 1(4 - 25] 2 (x+y-2z)

Then, using the constraint conditions, we find 12 + V4=,
For a generalization of this problem, see Problem 8.76.

Applications to errors

8.28.

The period T of a simple pendulum of length / is givenby 7'=2,/I/g . Find (a) the error and (b) the percent
error made in computing Tbyusing/=2mand g =9.75 m/ sec?, if the true values are [ = 195mand g =
9.81 m/sec?,

(a) T=2m"2g~12 Thep
2 1
dT=(2ﬂ:g_”2(l 2 g +(27c1”2)(—lg"3” dg) =Ldl—1c — dg (1)
2 2 o Hg g s

Errorin g = Ag = dg = + 0.06; errot in [ = Al=dl=-05

The error in T'is actually AT, which is in this case approximately equal to 4T, Thus, we have from Equa-

tion (1),
Error in T =47 = L (-0.05) -1t e 5 (+0.06) = - 0.0444 sec (approx.)
A(2)(9.75) (9.75)

The value of T for 1 =2, g =9.75is T = 21t ‘ /a%i—s =2.846 scc (approx.)




