L'Hospital's Rule

4.75. Evaluate each of the following limits.

$$\times$$
 (a) $\lim_{x\to 0} \frac{x-\sin x}{x^3}$

(i)
$$\lim_{x\to 0} (1/x - \csc x)$$

(b)
$$\lim_{x \to 0} \frac{e^{2x} - 2^{ex} + 1}{\cos 3x - 2\cos 2x + \cos x}$$

$$(j) \quad \lim_{x \to 0} x^{\sin x}$$

(c)
$$\lim_{x \to 1} (x^2 - 1) \tan \pi x / 2$$

(k)
$$\lim_{x \to \infty} (1/x^2 - \cot^2 x)$$

$$\times$$
 (d) $\lim x^3 e^{-2x}$

(1)
$$\lim_{x \to 0} \frac{\tan^{-1} x - \sin^{-1} x}{x(1 - \cos x)}$$

$$\times$$
 (e) $\lim_{x\to 0+} x^3 \ln x$

(m)
$$\lim_{x \to \infty} x \ln \left(\frac{x+3}{x-3} \right)$$

(f)
$$\lim_{x\to 0} (3^x - 2^x)/x$$

(n)
$$\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$$

(g)
$$\lim_{x \to 0} (1 - 3/x)^{2x}$$

(o)
$$\lim_{x \to 0} (x + e^x + e^{2x})^{1/x}$$

(h)
$$\lim_{x \to 0} (1+2x)^{1/3x}$$

(p)
$$\lim_{x\to 0+} (\sin x)^{1/\ln x}$$

Ans. (a)
$$\frac{1}{6}$$
 (b) -1 (c) $-4/\pi$ (d) 0 (e) 0 (f) ln 3/2 (g) e^{-6} (h) 1 (i) 0 (j) 1 (k) $\frac{2}{3}$ (l) $\frac{1}{3}$ (m) 6 (n) $e^{-1/6}$ (o) e^{2} (p) $e^{-1/6}$

Miscellaneous problems

4.76. Prove that $\sqrt{\frac{1-x}{1+x}} < \frac{\ln(1+x)}{\sin^{-1} x} < 1$ if 0 < x < 1.

4.77. If $\Delta f(x) = f(x + \Delta x) - f(x)$, (a) prove that $\Delta \{\Delta f(x)\} = \Delta^2 f(x) = f(x + 2\Delta x) - 2f(x + \Delta x) + f(x)$; (b) derive an expression for $\Delta^n f(x)$ where n is any positive integer; and (c) show that $\lim_{\Delta x \to 0} \frac{\Delta^n f(x)}{(\Delta x)^n} = f^{(n)}(x)$ if this limit exists.

4.78. Complete the analytic proof mentioned at the end of Problem 4.36.

 \times 4.79. Find the relative maximum and minima of $f(x) = x^2$, x > 0.

Ans. f(x) has a relative minimum when $x = e^{-1}$.

- **4.80.** A train moves according to the rule $x = 5t^3 + 30t$, where t and x are measured in hours and miles, respectively. (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?
- **4.81.** A stone thrown vertically upward has the law of motion $x = -16t^2 + 96t$. (Assume that the stone is at ground level at t = 0, that t is measured in seconds, and that x is measured in feet.) (a) What is the height of the stone at t = 2 seconds? (b) To what height does the stone rise? (c) What is the initial velocity, and what is the maximum speed attained?
- **4.82.** A particle travels with constant velocities v_1 and v_2 in mediums I and II, respectively (see Figure 4.11). Show that in order to go from point P to point Q in the least time, it must follow path PAQ where A is such that

$$(\sin \theta_1)/(\sin \theta_2) = v_1/v_2$$