SUPPLEMENTARY PROBLEMS

Derivatives

- 4.37. Use the definition to compute the derivatives of each of the following functions at the indicated point: (a) (3x 4)/(2x + 3), x = 1, (b) $x^3 3x^2 + 2x 5$, x = 2, (c) \sqrt{x} , x = 4, and (d) $\sqrt[3]{6x 4}$, x = 2.

 Ans. (a) 17/25, (b) 2, (c) $\frac{1}{4}$, (d) $\frac{1}{2}$
- **4.38.** Show from definition that (a) $\frac{d}{dx}x^4 = 4x^3$ and (b) $\frac{d}{dx}\frac{3+x}{3-x} = \frac{6}{(3-x)^2}, x \neq 3$.
- **4.39.** Let $f(x) = \begin{cases} x^3 \sin 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases}$ Prove that (a) f(x) is continuous at x = 0. (b) f(x) has a derivative at x = 0, and (c) f'(x) is continuous at x = 0.
- **4.40.** Let $f(x) = \begin{cases} xe^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Determine whether f(x) (a) is is continuous at x = 0, and (b) has a derivative at Ans. (a) Yes (b) Yes, 0
- **4.41.** Give an alternative proof of the theorem in Problem 4.3, using " ϵ , δ " definitions.
- **4.42.** If $f(x) = e^x$, show that $f'(x_0) = e^{x0}$ depends on the result $\lim_{h \to 0} (e^h 1)/h = 1$.
- **4.43.** Use the results $\lim_{h \to 0} (\sin h)/h = 1$. $\lim_{h \to 0} (1 \cos h)/h = 0$ to prove that if $f(x) = \sin x$, $f'(x_0) = \cos x_0$.

Right-and left-hand derivatives

4.44. Let f(x) = x |x|. (a) Calculate the right-hand derivative of f(x) at x = 0. (b) Calculate the left-hand derivative of f(x) at x = 0. (c) Does f(x) have a derivative at x = 0? (d) Illustrate the conclusions in (a), (b), and (c) from a graph.

- **4.45.** Discuss the (a) continuity and (b) differentiability of $f(x) = x^p \sin 1/x$, f(0) = 0, where p is any positive number. What happens in case p is any real number?
- 4.46. Let $f(x) = \begin{cases} 2x 3, & 0 \le x \le 2 \\ x^2 3, & 2 < x \le 4 \end{cases}$. Discuss the (a) continuity and (b) differentiability of f(x) in $0 \le x \le 4$.
- **4.47.** Prove that the derivative of f(x) at $x = x_0$ exists if and only if $f'_+(x_0) = f'_-(x_0)$.
- 4.48. (a) Prove that f(x) = x³ x² + + 5x 6 is differentiable in a ≤ x ≤ b, where a and b are any constants.
 (b) Find equations for the tangent lines to the curve y = x³ x² + 5x 6 at x = 0 and x = 1. Illustrate by means of a graph. (c) Determine the point of intersection of the tangent lines in (b). (d) Find f'(x), f''(x), f'''(x), f'''(x), f'''(x), ...

Ans. (b)
$$y = 5x - 6$$
, $y = 6x - 7$ (c) $(1, -1)$ (d) $3x^2 - 2x + 5$, $6x - 2$, 6 , 0 , 0 , 0 , ...

4.49. If $f(x) = x^2 |x|$, discuss the existence of successive derivatives of f(x) at x = 0.

Differentials

- **4.50.** If y = f(x) = x + 1/x, find (a) Δy , (b) dy, (c) $\Delta y dy$, (d) $(\Delta y dy)/\Delta x$, and (e) dy/dx.

 Ans. (a) $\Delta x \frac{\Delta x}{x}$ (b) $\left(1 \frac{1}{x^2}\right) \Delta x$ (c) $\frac{(\Delta x)^2}{x^2(x + \Delta x)}$ (d) $\frac{\Delta x}{x^2(x + \Delta x)}$ (e) $1 \frac{1}{x^2}$
- **4.51.** If $f(x) = x^2 + 3x$, find (a) Δy , (b) dy, (c) $\Delta y/\Delta x$, (d) dy/dx, and (e) $(\Delta y dy)/\Delta x$, if x = 1 and $\Delta x = .01$. Ans. (a) .0501, (b) .05, (c) 5.01, (d) 5, (e) .01
- 4.52. Using differentials, compute approximate values for each of the following: (a) $\sin 31^\circ$, (b) $\ln(1.12)$, (c) $\sqrt[5]{36}$.

 Ans. (a) 0.515, (b) 0.12, (c) 2.0125
- **4.53.** If $y = \sin x$, evaluate (a) Δy and (b) dy. (c) Prove that $(\Delta y dy)/\Delta x \to 0$ as $\Delta x \to 0$.

Differentiation rules and elementary functions

- **4.54.** Prove the following:
 - (a) $\frac{d}{dx} \{ f(x) + g(x) \} = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)$
 - (b) $\frac{d}{dx} \{ f(x) g(x) \} = \frac{d}{dx} f(x) \frac{d}{dx} g(x)$
 - (c) $\frac{d}{dx} \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x)f'(x) f(x)g'(x)}{[g(x)]^2}, \quad g(x) \neq 0.$
- **4.55.** Evaluate (a) $\frac{d}{dx} \left\{ x^3 \ln \left(x^2 2x + 5 \right) \right\}$ at x = 1 and (b) $\frac{d}{dx} \left\{ \sin^2 \left(3x + \pi / 6 \right) \right\}$ at x = 0.

 Ans. (a) $3 \ln 4$ (b) $\frac{3}{2} \sqrt{3}$
- **4.56.** Derive these formulas: (a) $\frac{d}{dx}a^u = a^u \ln a \frac{du}{dx}$, a > 0, $a \ne 1$; $\frac{d}{dx}\csc u = -\csc u \cot u \frac{du}{dx}$; and (c) $\frac{d}{dx}\tanh u = \sec h^2 u \frac{du}{dx}$ where u is a differentiable function of x.
- **4.57.** Compute (a) $\frac{d}{dx} \tan^{-1} x$, (b) $\frac{d}{dx} \csc^{-1} x$, (c) $\frac{d}{dx} \sinh^{-1} x$, and (d) $\frac{d}{dx} \coth^{-1} x$, paying attention to the use of principal values.
- **4.58.** If $y = x^x$, compute dy/dx. (Hint: Take logarithms before differentiating.) Ans. $x^x(1 + \ln x)$