- 3.63. If $[x] = \text{largest integer} \le x$, evaluate (a) $\lim_{x \to 2+} \{x [x]\}$ and (b) $\lim_{x \to 2-} \{x [x]\}$.

 Ans. (a) 0 and (b) 1
- 3.64. If $\lim_{x \to x_0} f(x) = A$, prove that (a) $\lim_{x \to x_0} \{f(x)\}^2 = A^2$ and (b) $\lim_{x \to x_0} \sqrt[3]{f(x)} = \sqrt[3]{A}$. What generalizations of these do you suspect are true? Can you prove them?
- 3.65. If $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B$, prove that (a) $\lim_{x \to x_0} \{f(x) g(x)\} = A B$ and (b) $\lim_{x \to x_0} \{af(x) + bg(x)\} = aA + bB$, where a, b = a any constants.
- **3.66.** If the limits of f(x), g(x), and h(x) are A, B, and C respectively, prove that (a) $\lim_{x \to x_0} \{f(x) + g(x) + h(x)\} = A + B + C$ and (b) $\lim_{x \to x_0} f(x)g(x)h(x) = ABC$. Generalize these results.
- **3.67.** Evaluate each of the following using the theorems on limits.

(a)
$$\lim_{x \to 1/2} \left\{ \frac{2x^2 - 1}{(3x + 2)(5x - 3)} - \frac{2 - 3x}{x^2 - 5x + 3} \right\}$$

(b)
$$\lim_{x \to \infty} \frac{(3x-1)(2x+3)}{(5x-3)(4x+5)}$$

(c)
$$\lim_{x \to -\infty} \left(\frac{3x}{x-1} - \frac{2x}{x+1} \right)$$

(d)
$$\lim_{x \to 1} \frac{1}{x - 1} \left(\frac{1}{x + 3} - \frac{2x}{3x + 5} \right)$$

Ans. (a) -8/21 (b) 3/10 (c) 1 (d) 1/32

- 3.68. Evaluate $\lim_{h \to 0} \frac{\sqrt[3]{8+h}-2}{h}$. (Hint: Let $8+h=x^3$.)

 Ans. 1/12
- **3.69.** If $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B \neq 0$, prove directly that $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$.
- 3.70. Given $\lim_{x\to 0} \frac{\sin 3x}{x} = 1$, evaluate:

(a)
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$

(e)
$$\lim_{x \to 0} \frac{6x - \sin 2x}{2x + 3\sin 4x}$$

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

(f)
$$\lim_{x \to 0} \frac{\cos ax - \cos bx}{x^2}$$

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

(g)
$$\lim_{x \to 0} \frac{1 - 2\cos x + \cos 2x}{x^2}$$

(d)
$$\lim_{x\to 3} (x-3) \csc \pi x$$

(h)
$$\lim_{x \to 1} \frac{3 \sin \pi x - \sin 3\pi x}{x^3}$$

Ans. (a) 3 (b) 0 (c)
$$\frac{1}{2}$$
 (d) $-1/\pi$ (e) $\frac{2}{7}$ (f) $\frac{1}{2}$ (b² - a²) (g) -1 (h) $4\pi^3$

3.71. If
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
, prove that (a) $\lim_{x \to 0} \frac{e^{-ax} - e^{-bx}}{x} = b - a$, (b) $\lim_{x \to 0} \frac{a^x - b^x}{x} = \ln \frac{a}{b}$, $a, b > 0$, and (c) $\lim_{x \to 0} \frac{\tanh ax}{x} = a$.

3.72. Prove that
$$\lim_{x \to x_0} f(x) = l$$
 if and only if $\lim_{x \to x_0^+} f(x) = l$.

Continuity

In the following problems, assume the largest possible domain unless otherwise stated.

- **3.73.** Prove that $f(x) = x^2 3x + 2$ is continuous at x = 4.
- **3.74.** Prove that f(x) = 1/x is continuous (a) at x = 2 and (b) in $1 \le x \le 3$.
- **3.75.** Investigate the continuity of each of the following functions at the indicated points:

(a)
$$f(x) = \frac{\sin x}{x}$$
; $x \neq 0$, $f(0) = 0$; $x = 0$

(c)
$$f(x) = \frac{x^3 - 8}{x^2 - 4}$$
; $x \ne 2$, $f(2) = 3$; $x = 2$

(b)
$$f(x) = x - |x|$$
; $x = 0$

(d)
$$f(x) = \begin{cases} \sin \pi x, & 0 < x < 1 \\ \ln & 1 < x < 2 \end{cases}$$
; $x = 1$

Ans. (a) discontinuous, (b) continuous, (c) continuous, (d) discontinuous

- 3.76. If [x] = greatest integer $\leq x$, investigate the continuity of f(x) = x [x] in the interval (a) 1 < x < 2 and (b) $1 \leq x \leq 2$.
- **3.77.** Prove that $f(x) = x^3$ is continuous in every finite interval.
- **3.78.** If f(x)/g(x) and g(x) are continuous at $x = x_0$, prove that f(x) must be continuous at $x = x_0$.
- **3.79.** Prove that $f(x) = (\tan^{-1} x)/x$, f(0) = 1 is continuous at x = 0.
- **3.80.** Prove that a polynomial is continuous in every finite interval.
- **3.81.** If f(x) and g(x) are polynomials, prove that f(x)/g(x) is continuous at each point $x = x_0$ for which $g(x_0) \neq 0$.
- **3.82.** Give the points of discontinuity of each of the following functions.

(a)
$$f(x) = \frac{x}{(x-2)(x-4)}$$

(c)
$$f(x) = \sqrt{(x-3)(6-x)}$$
, $3 \le x \le 6$

(b)
$$f(x) = x^2 \sin 1/x, x \neq 0, f(0) = 0$$

(d)
$$f(x) = \frac{1}{1 + 2\sin x}$$

Ans. (a) x = 2, 4 (b) none (c) none (d) $x = 7\pi/6 \pm 2m\pi, 11\pi/6 \pm 2m\pi, m = 0, 1, 2, ...$