3.32. Prove Theorem 8, Page 52.

Suppose that f(a) < 0 and f(b) > 0. Since f(x) is continuous, there must be an interval (a, a + h), h > 0, for which f(x) < 0. The set of points (a, a + h) has an upper bound and so has a least upper bound, which we call c. Then $f(c) \le 0$. Now we cannot have f(c) < 0, because if f(c) were negative we would be able to find an interval about c (including values greater than c) for which f(x) < 0; but since c is the least upper bound, this is impossible, and so we must have f(c) = 0 as required.

If f(a) > 0 and f(b) < 0, a similar argument can be used.

- 3.33. (a) Given $f(x) = 2x^3 - 3x^2 + 7x - 10$, evaluate f(1) and f(2). (b) Prove that f(x) = 0 for some real number xsuch that 1 < x < 2. (c) Show how to calculate the value of x in (b).
 - (a) $f(1) = 2(1)^3 3(1)^2 + 7(1) 10 = -4$, $f(2) = 2(2)^3 3(2)^2 + 7(2) 10 = 8$.
 - (b) If f(x) is continuous in $a \le x \le b$ and if f(a) and f(b) have opposite signs, then there is a value of x between a and b such that f(x) = 0 (Problem 3.32).

To apply this theorem, we need only realize that the given polynomial is continuous in $1 \le x \le 2$, since we have already shown in (a) that f(1) < 0 and f(2) > 0. Thus, there exists a number c between 1 and 2 such that f(c) = 0.

(c) $f(1.5) = 2(1.5)^3 - 3(1.5)^2 + 7(1.5) - 10 = 0.5$. Then, applying the theorem of (b) again, we see that the required root lies between 1 and 1.5 and is "most likely" closer to 1.5 than to 1, since f(1.5) =0.5 has a value closer to 0 than f(1) = -4 (this is not always a valid conclusion but is worth pursuing in practice).

Thus, we consider x = 1.4. Since $f(1.4) = 2(1.4)^3 - 3(1.4)^2 + 7(1.4) - 10 = -0.592$, we conclude that there is a root between 1.4 and 1.5 which is most likely closer to 1.5 than to 1.4.

Continuing in this manner, we find that the root is 1.46 to 2 decimal places.

3.34. Prove Theorem 10, Page 52.

Given any $\epsilon > 0$, we can find x such that $M - f(x) < \epsilon$ by definition of the l.u.b. M.

Then $\frac{1}{M-f(x)} > \frac{1}{\varepsilon}$, so that $\frac{1}{M-f(x)}$ is not bounded and, hence, cannot be continuous in view of

Theorem 4. Page 52. However, if we suppose that $f(x) \neq M$, then, since M - f(x) is continuous, by hypothesis

we must have $\frac{1}{M - f(x)}$ also continuous. In view of this contradiction, we must have f(x) = M for at least

one value of x in the interval.

Similarly, we can show that there exists an x in the interval such that f(x) = m (Problem 3.93).

SUPPLEMENTARY PROBLEMS

Functions

3.35. Give the largest domain of definition for which each of the following rules of correspondence supports the the construction of a function.

(a)
$$\sqrt{(3-x)(2x+4)}$$
 (b) $(x-2)/(x^2-4)$ (c) $\sqrt{\sin 3x}$ (d) $\log_{10}(x^3-3x^2-4x+12)$

Ans. (a)
$$-2 \le x \le 3$$
 (b) all $x \ne \pm 2$ (c) $2m\pi/3 \le x \le (2m+1)\pi/3$, $m = 0, \pm 1, \pm 2, \dots$ (d) $x > 3, -2 < x < 2$

3.36. If
$$f(x) = \frac{3x+1}{x-2}$$
, $x \neq 2$, find:

(a)
$$\frac{5f(-1)-2f(0)+3f(5)}{6}$$
 (b) $\left\{f\left(-\frac{1}{2}\right)\right\}^2$ (c) $f(2x-3)$ (d) $f(x)+f(4/x), x \neq 0$ (e) $\frac{f(h)-f(0)}{h}h \neq 0$ (f) $f(\{f(x)\})$

Ans. (a)
$$\frac{61}{81}$$
 (b) $\frac{1}{25}$ (c) $\frac{6x-8}{2x-5}$, $x \neq 0$, $\frac{5}{2}$, 2 (d) $\frac{5}{2}$, $x \neq 0$, 2 (e) $\frac{7}{2h-4}$, $h \neq 0$, 2 (f) $\frac{10x+1}{x+5}$, $x \neq -5$, 2

3.37. If $f(x) = 2x^2$, $0 < x \le 2$, find (a) the l.u.b. and (b) the g.l.b. of f(x). Determine whether f(x) attains its l.u.b. and g.l.b.

Ans. (a) 8 (b) 0

3.38. Construct a graph for each of the following functions.

(a)
$$f(x) = |x|, -3 \le x \le 3$$

(f)
$$\frac{x - [x]}{x}$$
 where [x] = greatest integer $\leq x$

(b)
$$f(x) = 2 - \frac{|x|}{x}, -2 \le x \le 2$$

$$(g) f(x) = \cosh x$$

(c)
$$f(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & x = 0 \\ 1, & x > 0 \end{cases}$$

$$(h) \ f(x) = \frac{\sin x}{x}$$

(d)
$$f(x) = \begin{cases} -x, & -2 \le x \le 0 \\ x, & 0 \le x \le 2 \end{cases}$$

(i)
$$f(x) = \frac{x}{(x-1)(x-2)(x-3)}$$

(e)
$$f(x) = x^2 \sin 1/x, x \neq 0$$

$$(j) \ f(x) = \frac{\sin^2 x}{x^2}$$

- 3.39. Construct graphs for (a) $x^2/a^2 + y^2/b^2 = 1$, (b) $x^2/a^2 y^2/b^2 = 1$, (c) $y^2 = 2px$, and (d) $y = 2ax x^2$, where a, b, and p are given constants. In which cases, when solved for y, is there exactly one value of y assigned to each value of x, thus making possible definitions of functions f and enabling us to write y = f(x)? In which cases must branches be defined?
- **3.40.** (a) From the graph of $y = \cos x$, construct the graph obtained by interchanging the variables and from which $\cos^{-1} x$ will result by choosing an appropriate branch. Indicate possible choices of a principal value of $\cos^{-1} x$. Using this choice, find $\cos^{-1}(1/2) \cos^{-1}(-1/2)$. Does the value of this depend on the choice? Explain.
- **3.41.** Work parts (a) and (b) of Problem 3.40 for (a) $y = \sec^{-1} x$ and (b) $y = \cot^{-1} x$.
- 3.42. Given the graph for y = f(x), show how to obtain the graph for y = f(ax + b), where a and b are given constants. Illustrate the procedure by obtaining the graphs of (a) $y = \cos 3x$, (b) $y = \sin(5x + \pi/3)$, and (c) $y = \tan(\pi/6 2x)$.
- **3.43.** Construct graphs for (a) $y = e^{-|x|}$, (b) $y = \ln |x|$, and (c) $y = e^{-|x|} \sin x$.