From Equation (1), integrating with respect to x keeping y constant, we have

o =2y =2xy* + f(y)

where f(y) is the “constant” of integration. Substituting this into Equation (2) yields

X —dxy + F(y) =57 — dxy + 6y

from which F'(y) = 6y, i.e., f(¥) = 2y + ¢.

Hence, the required function is ¢ = x*y — 2x3” + 2y* + ¢, where ¢ is an arbitrary constant.

Note that by Theorem 3, Page 130, the existence of such a function is guaranteed, since if P = 3x%y — 2)?
and Q = &' —4xy + 6y%, then 9 P/d y = 3" — 4y = 0 Q/ 0 x identically. If @ P/d y # 9 O/ x, this function
would not exist and the given expression would not be an exact differential.

Method 2:

(Bx’y -2y") dx + (x* — dxy + 6y*) dy = 3x*y dx + x° dy) — (2y" dx + 4xy dy) + 6y° dy
=d(x*y) = dQxy") +d2y*) = d(x’y - 2xy* +2)%)
=d(x’y-2xy" +2y° +¢)

Then the required function is x*y — 2xy* + 2y% + ¢,

This method, called the grouping method. is based on our ability to recognize exact differential combinations
and is less than Method 1. Naturally, before attempting to apply any method, we should determine whether the given
expression is an exact differential by using Theorem 3, Page 130. See Theorem 4, Page 130,

Differentiation of composite functions

6.17. Let z=f(x, y) and x = §(r), y = y(r) where f, ¢, W are assumed differentiable. Prove
d_dzdr %y
dt dx dt Oy dt
Using the results of Problem 6.14, we have
E:hméz__=hm §££+££+Eléﬁ 82& =%£+%Q
ox At dy At At At] odx dt Oy dr

dr 240 Ar A0
A A d
since, as At — 0, we have Ax = 0, Ay = 0,g, — 0, 8E & oL Y

At dt’ At dr
6.18. Ifz=e¥, x=1cos t,y=tsint, compute dz/dt at t = /2.

dz dz dx oz dy g _ : .
—_—=— = = P )t sin ¢ + cos 1) + (2xye™ )(f cos t +sin ¢
d. | Sueds- Oy e (y"e” )(~t sin )+ 2xye™ X )

Att=n/2,x=0,y=n/2. Then gz— =(n?/4)(—-n /2) + (0)1) = -7*/8,
t=m/2
Another method:  Substitute x and y to obtain z = ¢®sin?f cosr and then differentiate.

6.19. If z = f(x. y) where x = §(u, V) and y = W(u, v), prove the following:

dz 0z ox dz dy dz dz dx 0dz dy
a) —=——+——= b)) —=——+——"
()au ox du dy du ()80 ox dv  dy dv
(a) From Problem 6.14, assuming the differentiability of £, ¢, y, we have
§£=hmAZ_Hm{ﬁ£+%AX Ax Ay}_a_za_xﬁa_y

g, el
du -0 Ay -0 [9x Au Ay Au | Au " Au| 0x du Oy ou

(b) The result is proved as in (a) by replacing Au by Av and letting Av — 0.




6.20.

6.21.

6.22.

6.23.

[ Derivatives

) "

Prove that dz = a—z dx + —ai dy even if x and y are dependent variables.
X Y

Suppose x and y depend on three variables i, v, w, for example. Then

dx = x, du + x, dv + x, dw (1)
dy =y du+y,do+y, dw (2)
Thus,

Zldx + z,dy = (2., + 2 3,) du + (2, X, + 2,,) A0+ (2, %, + 2.),) dw =z, du + g dv + 7, = dz

using obvious generalizations from Problem 6.19.

IfT=x"—xy+y.x=pcosd andy=psind. find (a) d 7/d p. d 770 p and (b) 3 170,
g; ?)Z 3; i3 ?3: gy = (3x" — y)(cos ) + (3y* — x)(sin )
dT _oT ox  oT dy ) ,
eyt - V)(— 3y% —
B Booh Syos T PR ey i cosd)

This may also be worked by direct substitution of x and y in 7.

If U = z sin y/x where x = 317 + 25, y = 4r

U _Wox dUgy oUdk
dr Ox dr Jdy or Oz or

L e

6 4 ;
- ?Z c:osl+—zcosl+4rsmZ
X X X X X

oU 8U8x+8£81+8£§£
s ox Os dy ds 0Oz Os

L o O

2 65’ .
=_¥cosz——zcosz—éssml
x X X X X

2 2 2 o
If x=p cosd, y=p sin ¢, shown that (gVJ +[%‘;J =(%] +#(%] :

Using the subscript notation for partial derivatives, we have

— 25" and £ =2/ = 35%. find (a) 9U/Ir and (b) dU/Ds.
(a)

(b)

Vo=V, + Vi, = Vocosd + V sin ¢

(1)
Vo=Vxs+ Viyy=V(=psind) +V, (pcos §) 2)
Dividing both sides of Equation (2) by p. we have
é%:—vx sin¢ +V, cos¢ (3)
Then from Equations (1) and (3), we have

1 : ;
vy +F‘V¢2 =(V, cos¢ +V, sing)’ +(=V, sin¢ +V, cos$)* =V} +V



