Calculus 1: Final Exam (Sample)

Solve, justifying your answers, the following exercises at home. We will correct in class next thursday.

Exercise 1. Let \mathcal{C} the curve in the space parametrized by

$$f: \mathbb{R} \longrightarrow \mathbb{R}^3$$

 $t \longmapsto (t^3 - \sin 2t, te^t, t^2 - \cos t)$

- 1. compute velocity and acceleration of a particle moving along the curve C at time t = 0; (10)
- 2. compute the tangent line to \mathbb{C} at $t = \frac{\pi}{2}$; (7.5)
- 3. compute the normal plane to \mathbb{C} at $t = \frac{\pi}{2}$. (7.5)

Exercise 2. (25) Find maxima, minima and saddle point of the function z = f(x, y) defined by:

$$f(x,y) = x^2 + y^4 + 2y^2 - 4xy + 1$$

Exercise 3. Consider the surface S defined by $x^3y^2z - 3z^2 = 4xy - 5z + 2x$.

- 1. Find the tangent plane to S at the point (1,1,0); (7.5)
- 2. find the normal line to S at the point (1,1,0); (7.5)
- 3. find the tangent line at the point (1,1,0) to the level curve \mathcal{C} obtained intersecting \mathcal{S} with the plane π defined by the equation z = 0. (10)

Exercise 4. Consider the two variables function defined by $f(x,y) = \log(\sqrt{x^2 + y^2})$.

- 1. Compute the domain of f; (5)
- 2. compute the Laplacian $\Delta f(x,y) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$; (5)
- 3. consider polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ (r > 0). By the chain rule, compute the partial derivatives $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$; (5)
- 4. show that for any function z = f(x, y) the following equality holds:(10)

$$\left(\frac{\partial f}{\partial r}\right)^2 + \frac{1}{r}\left(\frac{\partial f}{\partial \theta}\right)^2 = \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right).$$