Calculus 1: Final Exam

Solve, justifying your answers, the following exercises.

Exercise 1. Let \mathcal{C} the curve in the space parametrized by

$$f: \mathbb{R} \longrightarrow \mathbb{R}^3$$

 $t \longmapsto (t^2 \sin t, e^t, t^2 - \cos t + \sin t)$

- 1. compute velocity and acceleration of a particle moving along the curve C at time t = 0; (8)
- 2. is it moving or stationary along the x axis at the instant t = 0? (2)
- 3. compute the tangent line to \mathbb{C} at $t = \frac{\pi}{2}$; (7.5)
- 4. compute the normal plane to \mathbb{C} at $t = \frac{\pi}{2}$. (7.5)

Exercise 2. Let $z = e^{f(x,y)}$ be a two variable function.

- 1. Find maxima, minima and saddle point when $z = e^{-\frac{1}{3}x^3 + x y^2}$ (20);
- 2. show that for all functions z = f(x, y), the two functions $z = e^{f(x,y)}$ and z = f(x, y) have the same critical points (5);
- 3. show that, if P is a critical point and $H(f)_{|P} = H(f(x_0, y_0))$ is the Hessian of f(x, y) evaluated in P, then $H(e^{f(x_0, y_0)}) = e^{f(x_0, y_0)} H(f(x_0, y_0))$ (5).
- 4. What can we conclude about maxima, minima and saddle points of $z = e^{f(x,y)}$ and z = f(x,y)? (2)

Exercise 3. Consider the surface S defined by $x^4yz^2 - 3x^2 = 2y^2z - 5y - 4z$.

- 1. Find the tangent plane to S at the point (1,0,1); (7.5)
- 2. find the normal line to S at the point (1,0,1); (7.5)
- 3. find the tangent line at the point (1,0,1) to the level curve \mathcal{C} obtained intersecting \mathcal{S} with the plane π defined by the equation z = 1. (10)

Exercise 4. Consider the two variables function defined by $f(x,y) = \log(\sqrt{y-x^2})$.

- 1. Compute the domain of f (4) and draw it (that is show it graphically). (3) Is it open or closed? (3)
- 2. consider polar coordinates $x = r \cos \theta$, $y = r \sin \theta$ (r > 0). By the chain rule, compute the partial derivatives $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$; (5)
- 3. what do level curves $c = \log(\sqrt{y x^2})$ (c constant) look like? (that is are they circles, hyperbola or parabola etc..)(3)