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Abstract. In this note, we construct the Vassiliev complex for contact
singularity classes of real smooth map-germs, and then we discuss on the
Thom polynomial theorem which describes relationships between the
cohomology group of our complex and characteristic classes associated
to contact singularities of smooth mappings.

1. Introduction

Let N and P be two smooth manifolds of dimension n and p respectively,
and Σ ⊂ Jk(n, p) a singularity type (a locally closed submanifold which
is invariant under A (right-left)-equivalence). For a smooth mapping f :
N → P , consider the subset Σ(f) of N consisting of points at which f
is of type Σ. If f is appropriately generic and Σ satisfies a certain good
condition, a cohomology class of N dual to Σ(f) is well defined, and the
class constitutes a homotopy invariant of f . In particular, if the dual class
does not vanish, any generic map homotopic to f has singularities of type
Σ. Thus such dual classes are considered as topological obstructions to
the existence of singularities of corresponding types. Furthermore, these
classes can be expressed as polynomials of standard characteristic classes
of bundles TN and f∗TP , that are usually called Thom polynomials (for
the detail, see §3). As the condition on Σ, we claim that its topological
closure Σ carries a fundamental class: there exists a unique class of the
closed supported homology group Hm(Σ;Z2) ( m = dimΣ ) such that for
any point x ∈ Σ the image of the class generates Hm(Σ,Σ−{x}). In general,
Σ are semialgebraic sets and contains singular loci with dimension less by
one, so the condition is not always satisfied. Hence it is a problem in local
geometry of real singularities to determine which kinds of singularity types
satisfy the condition and admit Thom polynomial expressions.

In this note, we will treat with this problem in a formal frame work,
according to a method introduced by V. A. Vassiliev in [17]. In the case
of function-singularities, Vassiliev constructed an abstract cochain complex
which represents the combinatorics of adjacency relations between various
singularity classes, see [17], [2]. We will carry out a similar construction for
contact singularity classes of smooth map-germs.

Consider a stratification of Jk(n, p) whose strata are invariant under con-
tact equivalence. Roughly speaking, associated to the stratification we can
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define a cochain complex as follows: cochains of the complex are formal
sums of strata of the stratification and are graded by the codimension of
the coresponding strata; the value of the coboundary operator evaluated on
a generator X is given by the formal sum of strata Xi to which X is adja-
cent ( i.e. Xi ⊂ X −X ) with suitable coefficients. The universal Vassiliev
complex is defined as a inductive limit of such complexes in a certain sense,
see §1, §2. Then for each cocycle of our complex, the closure of its support
in Jk(n, p) carries a fundamental class (see Remark (1.6)). Hence, for any
generic map f : N → P we can define a cohomology class of N dual to
the singularity set of f corresponding to each cocycle (Lemma (3.2)). In
particular, we can know from our complex the coexistence of singularities
of smooth mappings : the singularity set of generic f corresponding to each
coboundary cocycle of our complex is always homologous to zero, in other
words, its Thom polynomial is trivial.

In the final section §4, we will give some concrete results on some com-
putations of cohomology groups of our Vassiliev complex. This is based on
author’s master thesis of Tokyo Inst. Tech. in 1990 [10].

Throughout this note, manifolds and maps are assumed to be of class C∞,
and we will consider only coefficients in Z2 for the simplicity. As usual, we
let Kk

n,p (or simply Kk) denote the Lie group of k-jets of contact equivalence
acting on Jk(n, p).

2. Kk-classification of Jk(n, p) and Vassiliev complex

This section is devoted to introduce abstract cochain complexes associated
to stratifications of Jk(n, p), according to [16].

Definition 2.1. Let γ be a stratification of Jk(n, p) such that each stratum
of γ is a semialgebraic set. γ is said to be a Kk-classification of Jk(n, p)
if γ satisfies the following properties.

(1) Each stratum of γ is Kk-invariant.
(2) if a stratum of γ has connected components L1 and L2, then there

are two points zi ∈ Li(i = 1, 2) such that z1 is Kk-equivalent to z2.
(3) γ satisfies the Whitney b-regularity condition.

Let γ be a Kk-classification of Jk(n, p). Then, it is straightforward from
the definition to see the following properties.

Lemma 2.2. It holds that
(1) γ is a finite set.
(2) γ satisfies the frontier condition, i.e., if X, Y ∈ γ and X ∩ Y 6= ∅,

then Y ⊂ X.
(3) If X, Y ∈ γ and X ∩ Y 6= ∅, then X is locally topologically trivial

along Y .

Proof: (1) It follows from the locally finiteness of γ and that the closure
of each stratum of γ contains the k-jet of constant map-germ 0. (2) Since
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we know the fact that all connected components of a stratification with
Whitney b-regularity condition form a Whitney stratification satisfying the
frontier condition ( see [3], p.61, (5.6) and (5.7) ), the assertion of (2) follows
from the definition 2.1. (3) From (3) of Definition 2.1, we can see by using
Thom’s isotopy lemma ( cf. [3] ) that X is locally topologically trivial along
each connected component of Y . On the other hand, for any two connected
components L1 and L2 of Y , it follows from (2) of (1.1) that there are an
element H ∈ Kk sending a point of L1 to a point of L2. Since H induces
a local diffeomorphism which preserves X and Y , X is locally topologically
trivial of X along L1 ∪ L2. Thus we have the assertion (3). 2

Proposition 2.3. Let η be a locally finite partition of Jk(n, p) into semial-
gebraic Kk-invariant subsets. Then, there is a Kk-classification of Jk(n, p),
any stratum of which belongs to some element of η.

In fact, for any locally finite partition into semialgebraic subsets, there is
a canonical Whitney stratification which refines the partition ( cf. Gibson
et al. [3] ). This is proved by using set theoretical operations on semialge-
braic sets: Boolean operations, taking the topological closure, partition into
families of connected components, and removing the singular locus and bad
point sets. These operations can be used also in our equivariant situation.
(1.4). Assume that we are given a Kk-classification γ of Jk(n, p). Associated
with the classification γ we introduce a cochain complex as follows. First,
we set in a formal manner

Cs(γ) := Z2-module generated by elements of γ with codim =s (s ≥ 0),
C(γ) := ⊕s≥0C

s(γ), i.e., Z2-module generated by all elements of γ.

Second, let us define the boundary operator δγ : Cs(γ) → Cs+1(γ) as
follows. Let X be a strata of γ with codim s. From the frontier condition of
γ ((2) fo Lemma (1.2)), there is a filtration {Vi}i≥0 of the topological closure
X where Vi is the union of the strata included in X with codimension ≥ s+i
(here V0 = X). Set m = dimJk(n, p), and let

∂ : Hm−s(V0, V1;Z2) → Hm−s−1(V1, V2;Z2)

denote the connection homomorphism of relative homology groups with
closed supports. Let µX denote the fundamental class of Hm−s(V0, V1), i.e.,
for any point x ∈ V0 − V1, the image of µX generates Hm−s−1(V0, V0 − x).
Choose any stratum Y of γ contained in V1−V2 and any point y ∈ Y . Then
we define [X;Y ] by the value of j∗ ◦ ∂(µX) where j∗ : Hm−s−1(V1, V2;Z2) →
Hm−s−1(V1, V1 − y;Z2) ' Z2. Note that the value [X;Y ] dose not depend
on the choice of y, since X is topologically trivial along Y ((3) of Lemma
2.2). For any Y ∈ γ such that Y 6⊂ V1 − V2, we set [X;Y ] := 0. Now we
define δγ(X) :=

∑
Y ∈γ [X;Y ]Y ∈ Cs+1(γ).

Lemma 2.4. δγ ◦ δγ = 0.
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Proof: It suffices to see the value on the above X ∈ γ. Let Vi be the
filtration as above. By definition, [X, Y ] is the coefficient of ∂µX on the
component of Y in Hm−s−1(V1, V2). Considering the exact sequence

Hm−s(V0, V1)
∂→ Hm−s−1(V1, V2)

∂→ Hm−s−2(V2, V3),

it is easy to see that δγ ◦ δγ(X) = 0. 2

We will call the complex (C(γ), δγ) the Vassiliev complex for γ .

Remark 2.5. Let c =
∑

Xi be a cochain of Cs(γ) and Σc the union of
Xi. Then the topological closure Σc is a Whitney stratified closed subset of
Jk(n, p) which is invariant under the Kk action. Note that Hm−s(Σc,Σc −
Σc) ' ⊕Hm−s(Xi, Xi−Xi). If c is cocycle, i.e. δγ(c) = 0, then

∑
∂µXi = 0

and hence there is a unique lift of the class
∑

µXi via the exactness of the
following

Hm−s(Σc) → Hm−s(Σc,Σc − Σc)
∂→ Hm−s−1(Σc − Σc).

The lift is the fundamental class of Hm−s(Σc). According to the terminology
of R. M. Goresky [5], Σc is a Whitney stratified (m− s)-cycle in Jk(n, p).

(1.7). Let Γ denote the set of Kk-classifications of Jk(n, p). For γ, γ′ in
Γ, we define γ ≺ γ′ if any stratum of γ′ is contained in some strata of γ.
For γ, γ′ ∈ Γ, set γ ∩ γ′ = {X ∩X ′|X ∈ γ, X ′ ∈ γ′}, which is a locally finite
partition of Jk(n, p) whose elements are Kk invariant semialgebraic sets, and
hence through the procedure in (1.2) we can obtain a Kk-classification γ′′
such that γ ≺ γ′′ and γ′ ≺ γ′′. Thus (Γ,≺) is a directed set.

If γ ≺ γ′, then there is a natural homomorphism (ργ
γ′) : C(γ) → C(γ′)

defined by assigning X ∈ γ to the linear combination
∑

Xi of all Xi ∈ γ′
with Xi ⊂ X. It is easy to see that (ργ

γ′) commutes with δγ and δγ′ , and
hence ({C(γ)}, {(ργ

γ′)})γ∈Γ
form an inductive system of cochain complices.

Definition 2.6. A cochain complex C(Kk
n,p) is defined by lim−→C(γ).

The map (ργ
γ′) induces a homomorphism H∗(C(γ);Z2) → H∗(C(γ′);Z2),

and it is easy to see H∗(C(Kk
n,p);Z2) ' lim→H∗(C(γ);Z2).

3. The universal Vassiliev complex

The complex C(Kk
n,p) defined in the previous section depends on positive

integers n, p and k. In this section, we are going to construct an ”universal”
cochain complex depending only on an integer l, as the inductive limit of
{C(Kk

n,p)}l=p−n. In what follows in this section, we fix an integer l , and a
positive integer n is always assumed n + l > 0.

Jk(n, n + l) is simply denoted by Jk
n . For integers m,n such that m ≥ n,

let idm−n be the identity-germ of Rm−n at the origin, and inm : Jk
n → Jk

m a
natural inclusion defined by jkf 7→ jk(f × idm−n). For each z = jkf ∈ Jk

n ,
set corank(z) := min (n, n + l)− rank df . For a subset X of Jk

n , we also set
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corank(X) := min {corank (z), z ∈ X}, and we define a subset X(m) of Jk
m

to be Kk(inm(X)) ( = {Hinm(z) ∈ Jk
m|z ∈ X, H ∈ Kk

m,m+l}).
Lemma 3.1. The following properties hold:

(1) The map inm is transverse to every Kk-orbit in Jk
m.

(2) Let X be a semialgebraic smooth submanifold of Jk
n invariant under

the Kk-action, then X(m) is a Kk-invariant semialgebraic subman-
ifold of Jk

m such that codimX(m) = codimX and corankX(m) =
corankX.

(3) Let Y be a subset of Jk
m invariant under the Kk- action. Then,

(inm)−1Y = ∅ if and only if corank(Y ) is greater than min(n, n + l).
(4) Let Y be a semialgebraic subset of Jk

m. If corank(Y ) is greater than
min(n, n + l), then codimY ≥ (n + 1)(n + l + 1).

Proof: (1): As usual, let θ(f) denote the Em-module of C∞ vector field-
germs along map-germs f : Rm, 0 → Rm+l, 0. Let z = jkf in Jk

m. The
tangent spaces at z of the jet space Jk

m and the Kk-orbit of z are written as

TzJ
k
m = mmθ(f)/mk+1

m θ(f),

TzKkz = {tf(mmθ(idm) + f∗(mm+l)θ(f)}/mk+1
m θ(f)

where tf : θ(idm) → θ(f) is defined by the differential of f tf(v) := Tf ◦ v
( see e.g. [3], [8] ).

Now assume that f is written as g × idm−n for some g : Rn, 0 → Rn+l, 0.
Set w = jkg ∈ Jk

n . We can naturally identify θ(f) with the direct sum
θ(g◦p1)⊕θ(p2) where p1 and p2 denote the projections from Rm = Rn×Rm−n

to the first and second factors respectively. It is easy to see that the subspace

(inm)∗TwJk
n = mmθ(g ◦ p1)/{p∗2(mm−n) + mk+1

n }θ(g ◦ p1).

Furthermore, p∗2(mm−n)θ(g◦p1) ⊂ f∗(mm+l)θ(f) and mmθ(p2) ⊂ tf(mmθ(idm)).
It hence follows that TzJ

k
m = (inm)∗TwJk

n + TzKkz.
(2): Let τ denote the map Kk

m,m+l×Jk
n → Jk

m defined by τ(H, z) = H.inm(z),
and then X(m) is the image of τ . Since τ is an algebraic map, X(m) is
semialgebraic by using Tarski-Seidenberg Theorem. It follows from (1) that
the map τ is submersive, hence X(m) is a smooth submanifold with the
same codim and corank as X.
(3) and (4): Let Σn+1 be the set of Jk

m consisting of jets of kernel rank n+1.
Note that corankΣn+1 > min(n, n+ l) and codimΣn+1 = (n+1)(n+ l +1),
and if Y is Kk-invariant, then (inm)−1Y = ∅ ⇔ Y ⊂ Σn+1. These yield (3)
and (4). 2

(2.2). Let γ be a Kk-classification of Jk
n and let m ≥ n. We will construct

a Kk-classification of Jk
m induced from γ via inm as follows. Set A := {z ∈

Jk
m|corank(z) ≤ min(n, n+l)}. Then Jk

m = A∪Σn+1(disjoint). From (2), (3)
in Lemma 3.1, it follows that Jk

m has a Kk-invariant semialgebraic partition
consisting of Σn+1 and all X(m) for X ∈ γ. Using Lemma (1.3), we obtain a
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Kk-classification (inm)∗γ subordinate the semialgebraic partition. Note that
in this process, we need only to decompose the subset Σn+1 by set theoretical
operations, since all X(m) form a Kk-classification of the set A. Since the
codimension of X is the same as of X(m), we can define a cochain map
Cs(γ) → Cs((inm)∗γ) by X 7→ X(m). When we take the inductive limit of
such cochain maps over all Kk-classifications γ of Jk

n , we obtain a cochain
map (inm)] : C(Kk

n,n+l) → C(Kk
m,m+l).

(2.3). Let γk
n be a Kk-classification of Jk

n , and πr
k : Jr

n → Jk
n(k ≤ r)

the natural projection. Then, Jr
n has a Kr-classification which consists of

all (πr
k)
−1X where X ∈ γk

n, which is denoted by (πr
k)
∗γk

n. A cochain map
C(γk

n) → C((πr
k)
∗γk

n) is defined by X 7→ (πr
k)
−1X, and hence we obtain

(πr
k)

] : C(Kk
n,n+l) → C(Kr

n,n+l).

Lemma 3.2. (πr
k)

] commutes with (inm)].

This can be easily verified from the constructions in (2.2) and (2.3).

Definition 3.3. For an integer l, a cochain complex C(K(l)) is defined
by the inductive limit of C(Kk

n,n+l) tending n, k → ∞, which is called the
universal Vassiliev complex for contact classes with difference dimension l.

Proposition 3.4. For an arbitrary integer t > 0, there are two integers
k = k(t), n = n(t) such that the natural homomorphism Hs(C(Kk

n,n+l)) →
Hs(C(K(l))) is isomorphic for 0 ≤ s ≤ t.

Proof: The proof is divided by two steps. We first claim that
(i) For any integers t and k, there exists an integer n such that for ∀m > n,
∀s ≤ t, (inm)] : Cs(Kk

n,n+l) → Cs(Kk
m,m+l) is a cochain isomorphism.

We take an integer n satisfying (n + 1)(n + l + 1) > t, and in what follows
we write inm by i simply. Now let γ be a Kk-classification of Jk

m. Since i
is transverse to each element of γ, the pull buck of γ via i becomes a Kk-
classification of Jk

n , which we will write by i∗γ. If X is a strata of γ with
codim = s less than t, then by using Lemma (2.1) corankX ≤ min(n, n + l),
and X ′ := i−1X 6= ∅. Then X ′(m) coincides with X off the semialgebraic
proper subset X ∩ Σn+1. Thus we have Cs(i∗γ) ' Cs(i∗i∗γ) ' Cs(γ) for
s < t. Throughout formal arguments, we have (i).

Next we claim that
(ii) For any integers t and n, there exists an integer k such that for ∀r >
k,∀s ≤ t (πr

k)] : Cs(Kk
n,n+l) → Cs(Kr

n,n+l) is a cochain isomorphism.
Set W k

n to be the set of all k-jets jkf ∈ Jk
n such that f is not k − K-

determined. Namely, for any r-jet z ( r > k ) such that π(z) is not in W k
n ,

( here π denotes πr
k ), it holds that π−1π(z) ⊂ Krz. It is known (e.g., [3])

that W k
n is a semialgebraic set and codimW k

n tends to ∞ where k → ∞.
Thus, for given t we take an integer k to satisfy codimW k

n greater than t.
Let γ be a Kr-classification of Jr

n which refines the partition consisting of
two elements π−1W k

n and Jr
n − π−1W k

n . Then for each strata X of γ with
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codimension less than t, it holds that π−1πX = X, hence πX becomes
smooth and Kk-invariant. Let γ′ be a Kk-classification of Jk

n subordinate
to the semialgebraic partition consisting of all πX and W k

n , then it holds
that Cs(γ′) ' Cs(π∗γ′) ' Cs(γ) for s < t. Taking the inductive limits, (ii)
follows. This completes the proof. 2

4. Thom polynomials

In this section, we shall describe relations between the abstract Vassiliev
complex constructed in the previous sections and Thom polynomials of con-
tact singularities.
(3.1). For any cocyle c ∈ Cs(K(l)), i.e., δKc = 0, we take integers n and k
which satisfy Proposition 3.4, and then there is some Kk-classification γ of
Jk(n, n + l) and {Xi} ⊂ γ whose linear combination represents c. Set Σc to
be the union of Xi. Given smooth manifolds N and P of dimension n and
n + l respectively, we have the subbundle Σc(N, P ) of Jk(N, P ) with fibre
Σc. Since δKc = 0, we can see that Σc(N, P ) is a Whitney stratified cycle
in Jk(N, P ) as well Σc in Jk(n, n + l), see Remark 2.5.

Lemma 4.1. cf., [6], [5]. If the extension jkf is transverse to Σc(N, P ),
then Σc(f) also becomes a Whitney stratified cycle in N and Dual [Σc(f)] =
(jkf)∗Dual [Σc(N, P )] ∈ Hs(N ;Z2) ( here Dual means the Poincaré dual ).

These classes constitute homotopy invariants of f . Furthermore these
classes are universally represented by standard topological invariants of N ,
P and f , which we will explain bellow.
(3.3). Let Gn(Rn+q) be the Grassmanian of n-dimensional subspaces in
Rn+q, and Bo(n) the classifying space of real n-bundles (= limq→∞Gn(Rn+q)).
Recall that there is the principal O(n)-bundle ( the Stiefel bundle ) over
Gn(Rn+q) (cf., [[9]). The Lie group Lk(n) of invertible k-jets in Jk(n, n) is
isomorphic to the product of O(n) and some affine spaces, hence considering
the action of Lk(n) on Jk(n, n + l) (the action of right-equivalence), we can
define the associated bundle p : Hn → Gn(Rn+q) with fibre Jk(n, n + l).
Note that Hn is homotopy equivalent to the space Gn(Rn+q), because the
fibre is contractible. Each class c of H∗(C(Kk

n,n+l)) determines a stratified
cycle Σc(Hn) in Hn in a similar way as above (3.1), and then taking q →∞,
we can define a degree 0 map Pn : H∗(C(Kk

n,n+l)) → H∗(Bo(n);Z2) by
asigning c to Dual p∗[Σc(Hn)].

Recall that for m > n, there are natural inclusions φn
m : Gn(Rn+q) →

Gm(Rm+q) and inm : Jk(n, n + l) → Jk(m,m + l) ( see §2 ). They induce a
inclusion φ̄n

m : Hn → Hm:

Hn
φ→ Hm

p ↓ ↓ p

Gn(Rn+q)
φ→ Gm(Rm+q)
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Assume that m, n and s are as in Proposition 3.4. Then φ̄n
m is transverse to

the stratified set Σc(Hm), and Σc(Hn) = (φ̄n
m)−1Σc(Hm) (see (1) of Lemma

3.1 and (2.2)), hence by the similar arguments of Lemma 4.1 we have

Dual [Σc(Hn)] = (φ̄n
m)∗Dual [Σc(Hm)].

Since p induces isomorphisms of (co)homologies, it follows that Pn(c) =
(φn

m)∗Pm(c). Consequently, taking n, k → ∞, we have a graded group ho-
momorphism of degree 0

P : H∗(C(K(l))) → H∗(Bo;Z2).

Here Bo is the inductive limit of Bo(n), and we note that for any s > 0,
Hs(Bo;Z2) is generated by homogeneous polynomials of w1, · · · , ws ( cf.
[[9]] ).

Definition 4.2. cf. [15], [12]. For [c] ∈ Hs(C(K(l))), we will call the image
Pc of the above homomorphism the Thom polynomial for singularity type c.
(In particular, for each coboundary c ∈ C(K(l)), the Thom polynomial for c
is zero.)

More generally, consider the direct sum of H∗(C(K(l))) over all l, and
let H∗ be the reduced group defined by H0 := H0(C(K(0))) and Hs :=
⊕l∈ZHs(C(K(l))) for s > 0. Then we extend P as a homomorphism H∗ →
H∗(Bo;Z2).

Theorem 4.3. (The universal Thom polynomial theorem, e.g., [6], [15]).
Let [c] ∈ Hs(C(K(l))). For any n and k satisfying Proposition 3.4, and
for any smooth map f : Nn → Pn+l satisfying the transversality as just
described in (3.1), the Poincaré dual to [Σc(f)] is expressed by the polynomial
Pc replaced generators wi by the Stiefel-Whitney classes of the difference
bundle TN − f∗TP :

Dual [Σc(f)] = Pc(wi(TN − f∗TP )) ∈ Hs(N ;Z2).

Proof: First, by using Whitney’s immersion theorem (e.g., see [4]), we
choose a immersion Pn+l → Rm+l for some large m. Let us consider the
orthonormal bundle ν of the immersion and its pull buck bundle f∗ν via f .
The total space of f∗ν is denoted by M , and we let iN : N → M be the
natural inclusion to the zero section. Then M becomes a smooth m-manifold
and there is a smooth map F from M to Rm+l given by the composition of
f and the exponential map associated to the normal vectors. Then for each
point x ∈ N , the germ of F at i(x) is written as suspension of the germ of
f at x ( here the fibre νx is the suspension parameter space ), hence Σc(f)
is the transeverse intersection N ∩ Σc(F ). In particular, we may assume
that over M , jkF is transverse to the Whitney stratified cycle Σc(M,Rm+l)
( otherwise, we take a sufficiently small neighborhood of iN (N) instead of
M ). Consider the classifying map of the m-bundle TM into Gn(Rn+q) for
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sufficiently large q and the following diagram:

Jk(M,Rm+l) i→ Hm

jkF ↑ ↓ p

M
ρ→ Gm(Rm+q)

Then it follows that

Dual [Σc(F )] = (jkF )
∗
Dual [Σc(M,Rm+l)]

= (jkF )
∗
i∗Dual [Σc(Hm)] = ρ∗Pc(wi) = Pc(wi(TM)).

Since i∗NTM = TN ⊕ f∗ν and ν ⊕ TP = TRm+l, we have

Dual [Σc(f)] = i∗NDual [Σc(F )]
= Pc(i∗Nwi(TM)) = Pc(wi(TN ⊕ f∗ν)) = Pc(wi(TN − f∗TP )).

This completes the proof. 2

Definition 4.4. We shall consider H∗ as the set of all definable Thom
polynomials. The author expects that H∗ would admit some hidden algebraic
structures, as V.I.Arnol’d mentioned in [1], §5.2. Also see [10].

5. Calculation of C(K(0))

In this section, we consider the case of l = 0 (this is the equidimensional
case), and we give the initial part of H∗(C(K(0))) without the detail.

From Mather [8], we have the following proposition.

Proposition 5.1. Let k be sufficient large (k ≥ 9) and n ≥ 2. Then there
exists Kk-invariant semialgebraic subset ∆k

n of Jk(n, n) which satisfies the
following properties:

(1) codim∆k
n = 9

(2) Jk(n, n) − ∆k
n contains finitely many Kk-orbits with the associated

algebras Qk ' Ex,y/I + mk+1 listed in Table 1 below.

Table 1

K-class Ideal I Restriction TB-symbol codim
Aq < xq+1, y > 0 ≤ q ≤ 8 Σ1 q

Ia,b < xa + yb, xy > 2 ≤ a ≤ b, a + b ≤ 8 Σ2,0 a + b
IIa,b < xa − yb, xy > a ≤ b, a + b ≤ 8; a, b : even a + b
IV3 < x2 + y2, x3 > – 6

I7 < x2, y3 > – Σ2,1 7
I8 < x2 + y3, xy2 > – 8

Thus we have a partition η of Jk(2, 2) where elements are ∆k
2 and Kk-

orbits in Jk(2, 2) listed above. Let γk
2 be the Kk-classification obtained from
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η by (1.3) and (2.6) we see

Cs(γk
2 ) ' Cs(Kk

n,n) ' Cs(K(0)) for s ≤ 8, n ≥ 2.

In the following theorem, we determine the value of the differential δ on
generators of Cs(K(0)) (s ≤ 8).

Theorem 5.2. The differential operator of (Cs(K(0)), δ) for s ≤ 8 are
described by the following formulae:

(1) δAs = 0 (0 ≤ s ≤ 8), (2)δI2,2 = δII2,2 = I2,3,

(3)δI2,3 = 0, (4)δI2,4 = δII2,4 = I2,5 + I3,4,

(5)δI3,3 = δIV3 = I7, (6)δI2,5 = δI3,4 = 0,

(7)δI7 = 0.

This result is obtained from direct computations of [X;Y ] using normal
forms calculus ( see Ohmoto [11] and Lander [7] ).

Corollary 5.3. Cohomology groups Hs(C(K(0));Z2)(s ≤ 7) are given in
Table 2 bellow. In particular, coboundaries of Cs(K(0)) for s ≤ 8 are
I2,3(s = 5), I2,5 + I3,4(s = 7) and I7(s = 7).

Table 2

\dim 1 2 3 4 5 6 7

Hs(C(K(0))) Z2 Z2 Z2 (Z2)2 Z2 (Z2)3 (Z2)2

generators A1 A2 A3 A4 A5 A6 A7

I2,2 + II2,2 I2,4 + II2,4 I2,5(= I3,4)
I3,3 + IV3

coboundaries I2,3 I2,5 + I3,4

I7

(4.4). If c ∈ C(K(l)) is a coboundary, then the Thom polynomial P[c] is
always trivial. Hence it follows immediately from the Table 2 in Corollary
5.3 that

Proposition 5.4. In the case of n = p,
(1) the Thom polynomials of type I2,3 and I7 are trivial.
(2) the Thom polynomial of type I2,5 coincides with one of type I3,4.

Remark 5.5. For generators of H i(C(K(0))) listed in Table 2, we have not
well known concrete forms of corresponding Thom polynomials in the case
of dimension i ≥ 6. Let w̄i be the element of H i(Bo ,Z2) satisfying that

(1 + w1 + w2 + · · · )(1 + w̄1 + w̄2 + · · · ) = 1
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in the ring of formal series HΠ(Bo ,Z2), see [[9]]. Known results are only
as follows ([12], [2], [10], [6], [13]):

P (A1) = w̄1, P (A2) = w̄2
1 + w̄2, P (A3) = w̄3

1 + w̄1w2,

P (A4) = w̄4
1 + w̄1w̄3,

P (A5) = w̄5
1 + w̄2

1w̄3,

P (I2,2 + II2,2) = w̄2
2 + w̄1w̄3,

P (I2,4 + II2,4 + I3,3 + IV3) = (w̄2
1 + w̄2)(w̄2

2 + w̄1w̄2) + w̄2
3 + w̄2w̄4

For Thom polynomials for Boardman singularities Σi and Σi,j, the readers
are referred to [12], [14].



12 T. OHMOTO

References

[1] Arnol’d V. I. Singularities of Caustics and Wave fronts, Kluwer Academic Publishers,
1990.

[2] Arnol’d V. I., Vasil’ev V. A. and Goryunov V. V. and Lyashko O. P. Dynamical Sys-
tems VI: Singularity Theory I, Encyclopaedia Math. Sci. vol.6, Springer-Verlag,1993.

[3] Gibson C. G. et al. Topological stability of smooth mappings, Springer LNM., vol
552,1976.

[4] Golubitsky M. and Guillemin V. Stable mappings and their singularities, Springer-
Verlag, Berlin and New York,1973.

[5] Goresky R. M. Whitney stratified chains and cochains, Trans. AMS. vol 267, 1981,
175–196.
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