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Abstract. The Khovanskii-Pukhlikov formula for lattice polytopes is
the combinatorial counterpart to the Hirzebruch-Riemann-Roch formula
for a toric variety. In this short note, we introduce the Ty-operator for
polytopes analogous to the Hirzebruch’s Todd class tdy, which directly
recovers the generalized Ehrhart polynomial in a purely combinatorial
and very elementary way.

1. Introduction

1.1. Counting lattice points. The Euler-MacLaurin formula for lattice
polytopes has extensively been studied in connection with algebraic geometry
of toric varieties [9, 5, 3, 4, 11]. In this short note, we introduce the Ty-
operator for polytopes in a purely combinatorial context as an analogy to
the Hirzebruch’s Todd class tdy [7, 8]. We follow notational conventions in
[1, §10].

Let P ⊂ Rd be d-dimensional unimodular (i.e. smooth or Delzant) convex
lattice polytope containing the origin, and let Fj = Fj(P ) denote the set
of j-dimensional face of P . For each facet F ∈ Fd−1, there exists a unique
primitive normal vector uF ∈ Rd and aF ∈ Z so that

P = { x ∈ Rd | uF · x + aF ≥ 0 (∀F ) }.

For a sufficiently small vector of real parameters h = {hF }F∈Fd−1
indexed

by all facets, we define a perturbed polytope

P (h) = { x ∈ Rd | uF · x + aF + hF ≥ 0 (∀F ) }.

Given a polynomial functions ϕ over P (h), an asymptotic behavior with re-
spect to h of the integral

∫
P (h) ϕ(x)dx is considered as a higher dimensional

analogy to the classical Euler-MacLaurin formula of functions in one vari-
able: In [9] Khovanskii-Pukhlikov introduced the Todd operator associated
to the polytope P :

Todd(h) :=
∏

F∈Fd−1

∂
∂hF

1 − e
− ∂

∂hF

,

1
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where the factor is a differential operator of infinite order defined by
∂
∂x

1 − e−
∂

∂x

= 1 +
∑
k≥1

(−1)k Bk

k!

(
∂

∂x

)k

(Bk is the k-th Bernoulli number). It is then proved that

(1) Todd(h)

(∫
P (h)

ϕ(x)dx

)∣∣∣∣∣
h=0

=
∑

m∈P∩Zd

ϕ(m).

In particular, for the volume function vol(P (h)) =
∫
P (h) 1dx, the derivation

at h = 0 gives the number of lattice points |P ∩Zd|. It is particularly notable
that the Khovanskii-Pukhlikov formula (1) is obtained as the combinatorial
counterpart to the Hirzebruch-Riemann-Roch formula (HRR) for a smooth
toric variety X with a very ample divisor D:∫

X
td(TX)ch(O(D)) = χ(X,O(D)),

were td and ch are the Todd class and the Chern character of vector bundles,
respectively [7].

1.2. χy-genus. The Euler-Poincaré characteristic χ(X,O(D)) of the sheaf
cohomology is generalized to the so-called χy-genus,

χy(X,O(D)) =
∑
p≥0

χ(X,O(D) ⊗ Ωp(X))yp.

On the other hand, a modification of the Todd class td with a parameter y
(non-normalized version, cf. [8, p.61]) is introduced by

tdy(TX) := td(TX)ch(λy(T ∗X)) =
∏ (1 + ye−δi)δi

1 − e−δi
,

where δi are the Chern roots of TX and λy is the lambda operation, so that
it unifies several important characteristic classes:

• (y = 0): td0(TX) = td(TX), the Todd class,
• (y = −1): td−1(TX) = cn(TX), the top Chern class,
• (y = 1): td1(TX) = L(TX), the L-class.

The so-called generalized Hirzebruch-Riemann-Roch formula (gHRR) says
that when replacing td in the above HRR by tdy, the corresponding degree
expresses the χy-genus [7, 8] :∫

X
tdy(TX)ch(O(D)) = χy(X,O(D)).

This is indeed a formal extension of HRR, but it contains hidden information
of combinatorics unifying characteristic numbers just mentioned above. So
it would be natural to ask what is the combinatorial counterpart to the
gHRR formula for toric varieties so that it implies the formula (1) when
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specializing y to 0. That is just our motivation and we will not use these
algebro-geometric facts in the rest of this paper.

1.3. Ty-operator. We define the Ty-operator associated to P by

Toddy(h) := (1 + y)d−n ·
∏

F∈Fd−1

(1 + ye
− ∂

∂hF ) ∂
∂hF

1 − e
− ∂

∂hF

where d is the dimension of P and n = |Fd−1| is the number of facets
(=number of variables hF ).

By the same combinatorial proof of (1) with an elementary lemma, we
have

Theorem 1.1. Let P be a d-dimensional unimodular lattice polytope in Rd.
For any polynomial function ϕ : P → R, it holds that

Toddy(h)

(∫
P (h)

ϕ(x)dx

)∣∣∣∣∣
h=0

(2)

=
d∑

p=0

yp

 p∑
j=0

(−1)j

(
d − j

p − j

) ∑
Q∈Fd−j

∑
m∈Q∩Zd

ϕ(m)

 .

Remark 1.2. (Simple polytope) Not only unimodular polytopes but also
simple polytopes can be considered. In algebraic geometry side, a unimod-
ular polytope corresponds to a smooth toric variety, and a simple polytope
corresponds to a simplicial toric variety, which is a possibly singular variety
with quotient singularities. Brion-Vergne [4] generalized the Khovanskii-
Pukhlikov formula (1) for a simple lattice polytope P by modifying the
definition of the operator Todd(h), as an analogy to their HRR for simpli-
cial toric varieties [3]. Our formula (2) is also valid for simple polytopes
after modifying Toddy(h) in a similar way to Brion-Vergne’s Todd operator.
Then the resulting formula corresponds to a result in the recent work of
Maxim-Schürmann [11] on the gHRR formula for simplicial toric varieties
in algebraic geometry side.

The right hand side of the above formula is rewritten by
d∑

j=0

Ψj(ϕ)(−y)j(1 + y)d−j ,

where Ψj(ϕ) :=
∑

Q∈Fd−j

∑
m∈Q∩Zd ϕ(m). Specializing the parameter y to

particular values, we have formulas for a certain weighted sum of lattice
points.

Corollary 1.3. The specialization of our formula at y = 0 is just the
Khovanskii-Pukhlikov formula for ϕ. The specialization at y = −1 gives
Ψd(ϕ), i.e., the sum of ϕ(m) over all vertices m ∈ F0, and also at y = 1,
we have

∑d
j=0(−1)d2d−jΨj(ϕ).
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1.4. Ehrhart polynomials. By Theorem 1.1 the coefficient of yp of

Toddy(h) (vol(tP (h))|h=0

(t ∈ N) is equal to

Ep
P (t) :=

p∑
j=0

(−1)j

(
d − j

p − j

) ∑
Q∈Fd−j

|tQ ∩ Zd|.

(E0
P (t) = |tP ∩ Zd| is the ordinary Ehrhart polynomial). This polynomial

Ep
P (t) is known as the p-Ehrhart polynomial of P introduced by Materov

[10]: Indeed it is proved that

χ(X,O(D) ⊗ Ωp(X)) = Ep
P (1)

using Ishida’s p-th complex of logarithmic differential forms and the Bott
vanishing theorem.

As a summary, for a d-dimensional smooth projective toric variety X with
a very ample divisor D so that P = PD ⊂ Rd, the corresponding polytope,
we have the following four equalties:∫

X tdy(TX)ch(O(D)) //

gHRR
��

Toddy(h)(vol(P (h))|h=0
oo

Thm 1.1
��

χy(X,O(D)) //

OO

∑d
p=0 Ep

P (1)yp

OO

oo

The vertical equalities are gHRR and Theorem 1.1, the lower horizontal
equality is just Materov’s theorem, and the upper horizontal equality is
verified directly in a standard way [6, 12]. Thus Theorem 1.1 (for ϕ = 1)
can be obtained passing through the gHRR and Materov’s formula, while
our short direct proof is purely combinatorial and does not require any
algebro-geometric background.

As for a comprehensive reference for viewing the current state of this
subject in algebraic geometry side, readers should be referred to Maxim-
Schürmann [11].

1.5. Note. This note is part of the first and second authors’ master-course
theses in Hokkaido University. After finishing their theses in January 2013,
we were noticed about [11]: we thank L. Maxim and J. Schürmann for letting
us know of their paper and pointing out an error in our earlier version. The
third author is partly supported by the JSPS grant no.24340007.

2. Proofs

Our proof is an extension of the proof of the Khovanskii-Pukhlikov for-
mula (1) (we follow [1, §10]) with an elementary lemma (Lemma 2.1 below).
Perhaps, this is the mostly straightforward way to access to the generalized
Ehrhart polynomials.
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2.1. Brion’s formula. Let P ⊂ Rd be a simple polytope of dimension d,
i.e., each vertex v ∈ F0 lies on precisely d edges of P . Equivalently, each
vertex v admits d integral vectors which generate the vertex cone Kv. So,
fix a set of such vectors for each v, and denote them by w1,v, · · · ,wd,v ∈ Zd.
The fundamental parallelepiped of Kv is defined by

Πv := { λ1w1,v + · · · + λdwd,v, 0 ≤ λi < 1 (∀i) }.
Broin’s theorem for a simple polytope [2] is described in the following

discrete and continuous exponential forms [1, Thm.3.5, 10.4]:

(3)
∑

m∈P∩Zd

em·z =
∑
v∈F0

ev·z
∑

m∈Πv∩Zd em·z∏
k∈J(1 − ewk,v ·z)

,

(4)
∫

P
ex·zdx = (−1)d

∑
v∈F0

ev·z | det[w1,v · · ·wd,v]|∏d
k=1 wk,v · z

.

Here z = (z1, · · · , zd) are formal variables of integral-point transforms (mul-
tivariate generating functions). Note that the continuous form (4) is valid
for simple rational polytopes.

2.2. Unimodular (smooth) polytope. We prove Theorem 1.1. Assume
that P is unimodular: For each vertex v, {wk,v}1≤k≤d is a basis of Zd. In
particular |Πv ∩ Zd| = | det[w1 · · ·wd]| = 1.

Now a perturbed polytope P (h) has vertices v−
∑d

k=1 hk,vwk,v for some
hk,v. We may assume that h is a rational vector small enough so that P (h)
is unimodular and rational. We apply (4) to P (h):

(5)
∫

P (h)
ex·zdx = (−1)d

∑
v∈F0

e(v−
P

hk,vwk,v)·z 1∏d
k=1 wk,v · z

.

We operate Toddy(h) to this integral over P (h) at h = 0. First, put

t̂y(x) :=
(1 + ye−

∂
∂x ) ∂

∂x

1 − e−
∂

∂x

= 1 + y +
∂

∂x
(· · · ).

Note that t̂y(x)(1) = 1 + y and

t̂y(x)(exz) =
(1 + ye−

∂
∂x ) ∂

∂x

1 − e−
∂

∂x

exz =
(1 + ye−z)z

1 − e−z
exz.

Let us see how t̂y(hF ) operates the right hand side of (5): If a vertex v is
contained in a facet F , say hF = hk,v, then

t̂y(hk,v)
(
e(v−

P

hk,vwk,v)·z
)∣∣∣

h=0
= ev·z (1 + yewk,v ·z)(−wk,v · z)

1 − ewk,v ·z .

If v is not contained in F , then the unnormalized constant appears:

t̂y(hF )
(
e(v−

P

hk,vwk,v)·z
)∣∣∣

h=0
= (1 + y)ev·z.
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The number of F not containing v is just n − d, where n = |Fd−1|, hence∏
F∈Fd−1

t̂y(hF ) operated on the right hand side of (5) at h = 0 yields the
factor (1 + y)n−d, but this factor cancels out the correction term in the
definition of Toddy(h). Thus

Toddy(h)

(∫
P (h)

ex·zdx

)∣∣∣∣∣
h=0

= (−1)d
∑
v∈F0

Toddy(h)

(
e(v−

P

hk,vwk,v)·z 1∏d
k=1 wk,v · z

)∣∣∣∣∣
h=0

= (−1)d
∑
v∈F0

ev·z∏d
k=1 wk,v · z

d∏
k=1

(1 + yewk,v ·z)(−wk,v · z)
1 − ewk,v ·z

=
∑
v∈F0

ev·z ·
d∏

k=1

1 + yewk,v ·z

1 − ewk,v ·z .

Next we expand the product in the last formula. Let [d] = {1, · · · , d}, and
the number of elements of a subset J ⊂ [d] is denoted by |J |.

Lemma 2.1. Given a sequence a1, a2, · · · (ak 6= 1), it holds that

d∏
k=1

1 + aky

1 − ak
=

d∑
p=0

yp

 p∑
j=0

(−1)j

(
d − j

p − j

) ∑
|J |=d−j

1∏
k∈J(1 − ak)

 .

Proof : The right hand side of the formula multiplied by
∏d

k=1(1 − ak) is
equal to

Bd :=
d∑

j=0

Aj,d (−y)j(1 + y)d−j ,

where A0,d = 1, Aj,d = 0 for j > d, and

Aj,d :=
∑

|J |=d−j

∏
k∈[d]−J

(1 − ak)

for 1 ≤ j ≤ d. Obviously, B1 = 1 + a1y. Since

Aj,d+1 = Aj,d + (1 − ad+1)Aj−1,d,

we see Bd+1 = (1 + y)Bd − (1 − ad+1)yBd = (1 + ad+1y)Bd. By induction,
we have Bd =

∏d
k=1(1 + aky). �

In the above lemma, we set ak = ewk,v ·z (1 ≤ i ≤ d). Let v ∈ F0.
Any face Q ∈ Fd−j having v as its vertex is uniquely determined by some
J = J(Q) ⊂ [d] with |J | = d − j so that the cone K(Q)v has the generators
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wk,v (k ∈ J). Hence we have∑
v∈F0

ev·z
d∏

k=1

1 + yewk,v ·z

1 − ewk,v ·z

=
d∑

p=0

yp

 p∑
j=0

(−1)j

(
d − j

p − j

) ∑
v∈F0

∑
|J |=d−j

ev·z∏
k∈J(1 − ewk,v ·z)


=

d∑
p=0

yp

 p∑
j=0

(−1)j

(
d − j

p − j

) ∑
Q∈Fd−j

∑
v∈F0(Q)

ev·z∏
k∈J(1 − ewk,v ·z)

 .

Note that each Q ∈ Fd−j is an unimodular lattice polytope in an affine sub-
space isomorphic to Rd−i × {0} ⊂ Rd by some unimodular linear transform
and an integral parallel transition. Thus Brion’s formula (3) can be applied
to Q, and we get ∑

v∈F0(Q)

ev·z∏
k∈J(1 − ewk,v ·z)

=
∑

m∈Q∩Zd

em·z.

Thus we have

Toddy(h)

(∫
P (h)

ex·zdx

)∣∣∣∣∣
h=0

=
d∑

p=0

yp

 p∑
j=0

(−1)j

(
d − j

p − j

) ∑
Q∈Fd−j

∑
m∈Q∩Zd

em·z

 .

Finally, expanding ex·z and em·z into power series, we obtain our formula
for homogeneous polynomials ϕ = (c · x)l with arbitrary values z = c and
l = 0, 1, · · · . Any polynomial function is a sum of such powers, thus our
theorem is proved.
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