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Abstract. We discuss Vassiliev-type invariants for isotopy classes of generic
maps Mm → Rn (m, n ≥ 2) using a kind of infinite dimensional Alexander
duality. First we describe a general framework based on Mather’s stratification

of the space C∞(M, Rn) of smooth mappings, and then deal with finite type
invariants for generic maps in an axiomatic way. Also we mention about a
relation with characteristic classes of manifold-bundles with fiber M as a sort
of degeneracy loci problem.

Introduction

In this short note, we revisit an ‘old and new’ theme on the topology of the
discriminant hypersurface Γ in the infinite dimensional space M of smooth map-
pings from an m-dimensional manifold M to Euclidean space, initiated by R. Thom
[27, 28],

M := C∞(M, Rn) ⊃ Γ := {C∞ unstable maps}.
In particular we are interested in

(A) H0(M− Γ) as the space of all isotopy invariants of generic maps;
(B) the space M as a linear representation of the group DiffM ;
(C) the space of all invariants of smooth oriented closed d-manifolds belonging

to a fixed cobordism class.
The topic (A) leads us to the theory of Vassiliev-type invariants for generic

maps [30, 3, 6, 7, 20, 31, 22, 5, 9, 13, 14]. We focus on an elementary common
feature of the theory in general dimensions m,n of the source and target manifolds
greater than or equal to 2. That would be much different from the theory of knot
invariants. For instance, according to the A-classification theory of map-germs,
first order invariants of generic maps Mm → Rn (m, n ≥ 2) can be quite rich,
while the first order invariant for knots S1 → R3 is trivial.

First we overview a general framework based on an invariant stratification of
the mapping space M due to J. Mather [18] and a characteristic spectral sequence
due to V. A. Vassiliev [29]. Second, in case of m,n ≥ 2, näıve finite type invariants
for generic maps are introduced in an axiomatic way similar to the case of knots
(Definition 3.2). We then show that such näıve finite type invariants are basically
reduced to polynomials of first order invariants (Theorem 3.7). In some particular
dimensions (e.g. in case of generic immersions of a surface into R4), similar results
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have been reported in [14, 13, 9], but the common essential reason has not been
quite clear so far. Our purpose is to figure it out in most general form.

The main point is as follows: (i) The transverse k-th self-intersection locus of
Γ consists of irreducible components Γ(a) labeled by k-tuples a = (αj) of local
singularity types of generic 1-parameter families of maps, and each Γ(a) turns to
be connected but not simply-connected in general; (ii) the value of the jump ∇kv
of any invariant v of order k vanishes on coherence relations for local invariants,
i.e., the relations determined by local data of adjacencies around singularity types
of codimension 2. Contrarily, in case of knots [30], (i) the k-th self-intersection
locus consists of many contractible components labeled by different ‘k-chord dia-
grams’, and (ii) the value of the jump ∇kv vanishes on the so-called 1- and 4-term
relations, which are in fact the coherence relations associated to adjacencies to
cusps and triple points, respectively. That is to say, in our case, the complexity of
combinatorics among local singularity types much increases, while the complexity
of chord-diagrams (=configurations of unstable singular points) is much simpli-
fied, because such a configuration space on M is connected. The lost information
must be hidden beyond the first cohomology groups H1(Γ(a)), non-transverse self-
intersection loci, some combinatorial data on the global configuration of critical
point sets, ... etc, which may suggest further studies on true finite type invariants
for generic maps.

As for (B) we describe an equivariant version of some tools used in (A) in
order to obtain a geometric presentation of characteristic classes of manifold-
bundles with fiber M and group Diff(M), based on Kazarian [15, 16, 17]. We
will briefly discuss a few examples and proposals.

Finally, we remark about a counterpart under global contact equivalence
(C) which has already been suggested in Thom [27]. For instance, consider M0 =
C∞(Sn+d, Sn)base (n À 0) and the discriminant D consisting of maps having crit-
ical value at a fixed point 0. Then H0(M0 − D) may be regarded as the space
of invariants of null-cobordant smooth closed manifolds of dimension d. In case of
d = 1 Saeki [23] has worked out some details on the classification of singular fibers.
In case of d = 3, Otsuki’s theory of finite type invariants [21] for Z-homology 3-
spheres is the case when restricted to an open set of M0 −D so that f−1(0) have
the fixed Betti numbers. There still remain further researches in this area.

All spaces and mappings are of class C∞ throughout this paper.
The author would like to thank the organizers of the 11th International Work-

shop on Real and Complex Singularities at ICMC-USP, Sao Carlos in 2010. In fact
this work was prepared for the conference. This was supported in part by JSPS
grant No.21540057.

1. Mapping space and Discriminant

1.1. A-equivalence and invariant stratification. Let M be a compact m-
dimensional manifold without boundary, and N an n-dimensional manifold without
boundary. Denote the space of smooth maps, equipped with C∞ topology, by
M := C∞(M,N).

We say a map ϕ : U → M from a finite dimensional manifold to M is smooth
if the evaluation map M × U → N is a C∞ map. This gives a Frechet manifold
structure on M.
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The A-equivalence group or the right-left group is the direct product of diffeo-
morphism groups, AM,N := Diff(M) × Diff(N), which acts on M by (ϕ, τ).f :=
τ ◦ f ◦ ϕ−1. Put A0

M,N to be the connected component containing (idM , idN ).

Definition 1.1. C∞ maps f, g : M → N are A-equivalent if AM,N .f =
AM,N .g, i.e., there exists (ϕ, τ) ∈ AM,N so that the following diagram commutes:

M
f //

ϕ '
²²

N

' τ

²²
M

g // N

Further, f, g are C∞-isotopic if A0
M,N .f = A0

M,N .g.

Definition 1.2. We say f is a C∞-structurally stable map if the orbit AM,N .f
is an open set in M. If the pair of dimension (m,n) is in so-called Mather’s nice
range, C∞-structurally stable maps form a residual open subset in M, that is
known as the C∞-Structural Stability Theorem proved by J. Mather. In this paper
we often call such f by a generic map for short.

We are interested in AM,N -orbits (or families of orbits) of finite codimension in
M, which are invariant Frechet submanifold of M. By definition, f is C∞-stable
if and only if codim AM,N .f = 0. Put

Γ∞ := { f ∈ M | codim AM,N .f = ∞ }, U0 := M− Γ∞.

An AM,N -invariant subset K of M is called to be pseudo-algebraic if for any
f ∈ K∩U0 and for any smooth map ϕ : U → M with ϕ(u0) = f which is transverse
to the AM,N -orbit of f at u0, the preimage ϕ−1(K) ⊂ U is a semi-algebraic subset
in some local coordinate centered at u0. A pseudo-algebraic set K is said to be of
codimension s if the semi-algebraic subset ϕ−1(K) is of codimension s around u0.

Theorem 1.3. (Mather [18])
Assume that (m,n) belongs to the nice range. Then Γ∞ has infinite codimension,
and there exists a filtration

M ⊃ Γ := Γ1 ⊃ Γ2 ⊃ · · · ⊃ Γs ⊃ · · · ⊃ Γ∞,

by AM,N -invariant closed pseudo-algebraic subsets Γs of codimension s such that it
admits a topologically locally trivial fibration πs : Γs − Γs+1 → Ys so that each fiber
is an AM,N -orbit and Ys is a finite dimensional manifold.

Remark 1.4. 1) In Theorem 1.3, Γs −Γs+1 is a disjoint union of single AM,N -
orbits of codimension s or moduli strata of AM,N -orbits whose base (parameter)
spaces are components of Ys, see §1.2 below.
2) By the definition, the complement M−Γ consists of all stable maps. An isotopy
invariant of stable maps is a locally constant function over M− Γ, thus we regard
the 0-th singular cohomology group H0(M−Γ) as the space of all isotopy invariants
of stable maps.
3) The ranks of H0(M− Γ) and of H0(Γs − Γs+1) are at most countable.
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1.2. Multi-singularity types. We outline the construction of the AM,N -
invariant filtration in Theorem 1.3.

A multi-germ is a map-germ ϕ : M,S → N, p at finite points S mapped to
a single point p = ϕ(S) (including a mono-germ as the case when S consists of a
single point). We denote by α, β, · · · , A-equivalent classes (or A-moduli families)
of multi-germs, and also denote by a = (α1, · · · , αl) an l-tuple of those A-classes
of multi-germs. The codimension |a| is given by the sum of Ae-codimension of αj .
Note that α is a stable (multi-)singularity if and only if its Ae-codimension = 0.

We say f : M → N has multi-singularities of type a (at S) if there are mutually
disjoint finite subsets S1, · · · , Sl in M (S =

∐
Sj) and l distinct points p1, · · · , pl ∈

N so that f(Sj) = pj and the germ f : M,Sj → N, pj is of type αj for each j.
For a multi-singularity type α of codimension ≥ 1, we put

Γ(α) := Cl { f ∈ Γ | f has a multi-singularity of type α }

(Cl stands for the closure), and for a l-tuple a = (α1, · · · , αl) with |αj | ≥ 1

Γ(a) := Cl { f ∈ Γ | f has multi-singularities of type a } =
l⋂

j=1

Γ(αj).

The locus Γs in Theorem 1.3 is given by

Γs :=
⋃

Γ(a)

taken over all multi-singularity types a of codimension ≥ s. In particular we obtain
a stratification

Γs − Γs+1 =
⊔

|a|=s

(Γ(a) − Γs+1).

Note that
• Γ(a) is a closed pseudo-algebraic subset of codimension s;
• f ∈ Γ(a)− Γs+1 if and only if f has multi-singularities of type a at some

S, any point in f−1(f(S)) − S is not critical, and f is infinitesimally
C∞-stable at any finite points in M − S;

• Γ(a)− Γs+1 is a Frechet submanifold of codimension s in M having pos-
sibly countably many connected components: Each component is a single
A0

M,N -orbit (if a consists of simple singularity types), or a moduli family
of orbits (if a contains a moduli singularity type);

• Γ(a)−Γs+1 is the transverse intersection of submanifolds Γ(αj)−Γ|αj |+1

in M.
The filtration in Theorem 1.3 is obtained by the above definitions and properties. A
technical detail in the proof belongs to the geometry of real algebraic group action
[18].

Definition 1.5. We say a multi-singularity type α is coorientable if the normal
bundle of Γ(α) − Γ|α|+1 is orientable. Also a = (α1, · · · , αl) is coorientable if each
αj is so.

Definition 1.6. We define the s-th transverse self-intersection locus of the
discriminant hypersurface Γ to be a union of Γ(a) of all s-tuples a = (α1, · · · , αs)
with |αj | = 1 (∀j); The rest is the non-transverse self-intersection locus of Γ, that
is a union of Γ(a) for a where some αj has codimension greater than one.
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Example 1.7. Any f ∈ Γ2 − Γ3 has either
- only a couple of multi-singularities of codim = 1 with distinct two critical values
(i.e., f belongs to the transverse double point locus of Γ); or
- only one multi-singularity of codim = 2 with a single critical value (i.e., f belongs
to the non-transverse intersection locus of Γ).
For instance, if m = 1 and n = 3, a map in the former case is an immersion with two
double points (two crossing changes), and a map in the latter case is an embedding
except for one ordinary cusp point.

2. Vassiliev complex

2.1. Characteristic spectral sequence. Let us think of the situation as in
Theorem 1.3. Put

Us := M− Γs+1,

then we have invariant open subsets of M:

M− Γ = U0 ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Us ⊂ · · · ⊂ U∞ ⊂ M.

The cohomology spectral sequence associated to this filtration is called the Vassiliev-
Kazarian spectral sequence for M [15, 29, 30]. The E1-term is

Es,t
1 := Hs+t(Us,Us−1; R) '←− Ht(Γs − Γs+1; R)

with a coefficient ring R. The arrow indicates the Alexander duality for functional
spaces in the sense of Eells [8], that is, the Thom isomorphism for coorientable com-
ponents of the s-codimensional Frechet manifold Γs − Γs+1 (for a non-coorientable
connected component the Thom class within integer coefficients vanishes, but it
works within Z2-coefficients). Thus Es,0

1 is the R-module generated by coorientable
connected components in Γs − Γs+1, especially,

E0,0
1 = H0(U0) = H0(M− Γ).

The first cochain complex is

0 → E0,t
1 → E1,t

1 → E2,t
1 → · · ·

where the operator d1 : Es,t
1 → Es+1,t

1 is the connection homomorphism ∂ of
cohomology exact sequence for the triple (Us+1,Us,Us−1). As usual, we put for
r ≥ 1,

Es,t
r+1 :=

ker[dr : Es,t
r → Es+r,t−r+1

r ]
Im [dr : Es−r,t+r−1

r → Es,t
r ]

with dr+1, and we have a natural homomorphism Es,t
∞ → H∗(M).

Instead, we may take

0 → E1,t
1 → E2,t

1 → E3,t
1 → · · ·

and Es,t
r (s ≥ 1), that approximates H∗(U ,U0) = H∗(M,M− Γ), the cohomology

with support on Γ.

Remark 2.1. The main technical invention in Vassiliev’s original approach [30]
is a simplicial resolution Γ′ → Γ of the discriminant hypersurface, constructed in
M×R∞ in a purely combinatorial way. A natural filtration of Γ′ produces a spec-
tral sequence converging to a subspace in H0(M− Γ). That spectral sequence is
an entirely different one from the characteristic spectral sequence described above,
so the readers should not confuse them. In this paper we wouldn’t develop such
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a simplicial resolution technique, although it might be possible theoretically. In-
stead we use a more easier cochain subcomplex of our Es,t

1 given by data of local
singularity types and some additional semi-global data of configurations of singular
points/values, [29, 19, 23]. A substitute to the ‘E1-term’ A∗ for the simplical reso-
lution Γ′ will be given in §3.3 by (the dual to) some cochain complex of singularities,
cf. [30, 2].

2.2. Local Vassiliev complex of multi-singularities. Let C0(A) = 0 and
for s ≥ 1 let

Cs(A) =
⊕

R · a
the R-module generated by coorientable A-classes a of multi-singularities of codi-
mension s (for a technical detail, see [29, 19]). This is regarded as a submodule

Cs(A) ⊂ Es,0
1 = H0(Γs − Γs+1;R)

by identifying a with the constant function on Γ(a)−Γs+1 (taking 1, otherwise 0).
The coboundary operator ∂ : Cs(A) → Cs+1(A) is induced from d1.

Definition 2.2. The cochain complex (C∗(A), ∂) is called the local Vassiliev
complex for A-classification of multi-singularities.

The operator ∂ : Cs(A) → Cs+1(A) can explicitly be written down as follows.
Let a ∈ Cs(A) and b ∈ Cs+1(A) (we fix coorientations of a, b in advance). Take
a versal deformation of b. On the parameter space, the bifurcation diagram Ψ(a)
of type a is defined: It is either empty or 1-dimensional semi-algebraic curves
approaching the origin (That corresponds to that the stratum Γ(a) is pseudo-
algebraic and of codimension s). Count the incidence coefficient [a; b], defined by
the algebraic intersection number of Ψ(a) with a small oriented sphere centered at
the origin. Then ∂a =

∑
[a; b] b, the sum taken over all generators b.

We use the A0-classification when the source and target manifolds M,N are
oriented. Its Vassiliev complex is denoted by C(A0).

Remark 2.3. Notice that the local Vassiliev complex is determined only by
the local classification of singularities. In fact, although there are possibly many
connected components in each Γ(a)−Γs+1, they are regarded as just ‘one stratum’
in the complex C∗(A). Instead, a more finer subcomplex can be considered by
adding some ‘non-local’ data to C∗(A), which we provisionally call an enriched
Vassiliev complex,

Cs
en(A) ⊂ Es,0

1 .

The additional data in consideration would be, for instance, types of configurations
of subsets S1, · · · , Sk on M at each of which a local bifurcation occurs (in case of
knots in 3-space, these data are called chord-diagrams or weight systems), the place-
ment of the singular set in M and of the singular value sets in N , the topological
types of singular fibers (if m ≥ n), and so on. Es,0

1 itself can be regarded as the
finest refinement among all the enriched complexes.

2.3. Local invariants for generic maps. There is a natural homomorphism

Hs(C(A)) → Es,0
2 → Es,0

∞ → Hs(M,M− Γ) → Hs(M).

In particular, if Hk+1(M) = 0, we have

ρ : Hk+1(C(A)) → Hk(M− Γ) modulo Hk(M).
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This map is explained as follows. For simplicity, assume that M is contractible
(e.g., M is connected and N = Rn). Let c =

∑
λa ·a be a cocycle of Ck+1(A), and

Dk+1 and Sk = ∂Dk+1 denote the standard oriented disk and the sphere. Given
any smooth map f : Sk → M − Γ, we can take a smooth map γ : Dk+1 → M
which is an extension of f , i.e., γ|∂Dk+1 = f , and is transverse to Γk+1. Then the
value of ρ([c]) on the cycle [f ] is given by

ρ([c])([f ]) =
∑

λa · ] [Γ(a) ∩ γ].

Here ] [Γ(a) ∩ γ] stands for the intersection number, that is, the number of points
b ∈ Dk+1 taking into account the sign ±1 so that the C∞-map γb : M → N
admits multi-singularities of type a at some finite points in M . The sign means
the coincidence between a given orientation of Dk+1 and the coorientation of a.

Definition 2.4. An element ρ(c) ∈ Hk(M − Γ) (determined up to Hk(M))
is called a local invariant for k-cycles in M − Γ. In particular, in case of k = 0,
a local invariant for generic maps is a locally constant function v : M − Γ → R
determined by some element of H1(C(A)) = ker ∂1 up to constants (Goryunov
[6]). If we take some enriched Vassiliev complex instead, then we say v = ρ(c) is
semi-local or enriched-local.

Example 2.5. For generic plane curves, there are Arnold’s basic invariants: J±

are local, while St is enriched-local in our sense, because its definition involves the
cyclic order of the preimage of a triple point. There are several higher dimensional
analogies to J+, J−, St: local invariants for M2 → R3 are related to inverse self-
tangencies and quadric points [6]; for generic immersions M3 → R5 the Smale
invariant is related [9], and so on. A list of some works is noted below (this list is
not complete!).

(m,n) object/singularities
(1, 1) functions on circle bundles/global max.-min. [15]
(1, 2) generic immersed curves, wavefronts [2, 1]
(1, 3) knots and links [30]
(2, 1) Morse function/singular fibers [23]
(2, 2) generic maps [20, 12]
(2, 3) generic maps [6]
(2, 4) generic immersions [14, 13], ribbon knots [11]
(3, 2) generic maps [31]
(3, 3) geneirc maps [22, 7]
(3, 4) generic immersions [5]
(3, 5) generic immersions [9]
(4, 3) generic maps/singular fibers [23, 32]

Example 2.6. For instance, look at the case of m = n = 2, studied in [20].
In that case, stable singularity types (codimension 0) are of fold, cusps and dou-
ble folds, and there are 10 multi-singularities of codimension one and 20 multi-
singularities of codimension two (Here couples of codimension one singularities are
omitted, since they do not effect coherence relations for local invariants):

0 // C1(A2,2) ' Z10 ∂ // C2(A2,2) ' Z20
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It turns out that H1(C(A); Z) = ker ∂ has rank 3 (the generators are denoted by
∆Ii (i = 1, 2, 3) in [20]) and local invariants (over R 3 1

4 ) are generated modulo
constants by

∆c = 2∆I1 : ] of cusps;
∆d = ∆I2 + ∆I3 : ] of double folds;
∆ν = ∆I1 − ∆I2 + ∆I3 : projective Bennequin invariant.

The last one is an interesting invariant for apparent contours obtained as a variant
of the Bennequin number for Legendre curves (e.g., [4] for a computer program to
compute ∆ν).

When we take the A0-equivalence instead of A, ∆c breaks into two independent
invariants ∆c± for the numbers of positive and negative cusps.

Further, note that type B (beak-to-beak) of codimension one can be separated
into two types according to how components of contour curves are mutually con-
nected. This yields an enriched-local invariant [12]:

∆I4 = ∆l − ∆b1 + ∆b2 : ] of components of critical set C(f).

3. Finite type invariants for generic maps

3.1. A näıve approach. A path transverse to the discriminant Γ is a smooth
homotopy which causes a generic local bifurcation, say of type α. We denote such
a path by

Ξ(α) : [−1, 1] −→ M, ε1 7→ Ξ(α)
ε1 ,

so that it is transverse to Γ(α) − Γ2 at ε = 0. For cooriented α, we always assume
that Ξ(α) is compatible with the coorientation, i.e., the path is directed to the given
normal orientation.

Let a = (α1, · · · , αs), all αj being of codimension one. A normal slice to
Γ(a) − Γs+1 is a smooth family of maps which causes local bifurcations of type αj

(j = 1, · · · , s) around s distinct points in N independently. We denote it by

Ξa : [−1, 1]s −→ M, (ε1, · · · , εs) 7→ Ξa
ε1···εs

so that Ξa
ε1···εs

∈ Γ(αi) if and only if εi = 0. If a is cooriented, Ξa is assumed to
be compatible with the coorientation for each αj .

Example 3.1. In case of maps S1 → R3, there is only one singularity type
of codimension one, δ := crossing change. Then Ξδs

for the s-tuple of δ means
a family which causes crossing changes at s distinct points in R3 independently;
In particular Ξδs

0 : S1 → R3 is an immersion with s double points. In case of
maps M2 → R2, there arise 10 different types of singularities of codimension one
(Example 2.5).

To define ‘finite type invariants’ in general case, we take in mind an analogy to
partial derivatives of functions in several variables.

Definition 3.2. For a locally constant function v : M − Γ → R, we define
the s-th partial derivative ∇av := ∇α1 · · ·∇αsv with respect to a = (α1, · · · , αs),
|αj | = 1, to be a locally constant function over Γ(a) − Γs+1 given by

∇av (Ξa
0···0) :=

∑
ε1 · · · εs · v(Ξa

ε1···εs
),
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the sum taken over 2s combinations of εi = ±1. We say that v is an invariant of
order at most r if the following condition (T) is satisfied:

∇av = 0 (∀a of codimension s ≥ r + 1). (T )

In particular, in case that m ≥ 2, such an invariant is called a näıve finite type
invariant.

Remark 3.3. The partial derivative

∇αv(Ξ0) = v(Ξ+) − v(Ξ−)

defines an operator ∇α : H0(Γ(a) − Γs+1) → H0(Γ(a ∪ α) − Γs+2).

Denote by Vr the R-module generated by invariants of order ≤ r:

V0 ⊂ V1 ⊂ · · · ⊂ V∞ :=
∞⋃

r=0

Vr ⊂ H0(M− Γ; R).

Obviously, an invariant of order zero is a function which is constant over each
connected component of M, therefore V0 = H0(M; R).

Lemma 3.4. V∞ is a graded R-algebra: If v1 ∈ Vr and v2 ∈ V`, then v1v2 ∈
Vr+`, where v1v2(f) := v1(f)v2(f) for f ∈ M− Γ.

Proof. Similarly as in the case of knots, a Leibniz type formula holds:

∇α(v1v2)(Ξ0) = v1(Ξ+)v2(Ξ+) − v1(Ξ−)v2(Ξ−)
= v1(Ξ+)(v2(Ξ+) − v2(Ξ−)) + (v1(Ξ+) − v1(Ξ−))v2(Ξ−)
= v1(Ξ+) · ∇αv2(Ξ0) + ∇αv1(Ξ0) · v2(Ξ−).

By the induction, we observe that any value of ∇av1v2 is written by a linear
combination ∇a′

v1∇a′′
v2 with a = a′ ∪ a′′. ¤

3.2. (Non-)transverse self-intersection. Let a = (αj), |αj | = 1. In gen-
eral the manifold Γ(a)−Γs+1 has many connected components separated by the dis-
criminant hypersurface Γ(a)∩Γs+1. Any transverse self-intersection locus Γ(a∪α),
where |α| = 1, is a top stratum of Γ(a) ∩ Γs+1, but it can happen that some non-
transverse self-intersection locus also becomes a top stratum. Provisionally we make
an additional strong condition:

Definition 3.5. We say that an invariant v : M − Γ → R satisfies the non-
transverse loci condition (NT) if for any a = (α1, · · · , αs) with |αj | = 1 the value
of ∇av does not change when passing through any non-transverse self-intersection
loci of codimension one in Γ(a). We denote by V ′

r (r ≥ 1) the subspace of Vr

consisting of invariants satisfying (NT) (for r = 0, V ′
0 = V0).

Lemma 3.6. Any polynomial of local invariants is a näıve finite type invariant
with (NT).

Proof. By Lemma 3.4, it is enough to see the case r = 1. If vc : M− Γ → R
is a local invariant corresponding to a Vassiliev 1-cocycle c =

∑
α cα ·α, then ∇αvc

is a constant function with value cα over Γ(α) − Γ2. Obviously vc is of first order
and satisfies (NT), since any jump of ∇αvc on Γ2 is zero. ¤

The converse is also true: We will show that our operators ∇α are linearly
dependent in the relation corresponding to the coherence condition ∂ = 0 of local
invariants: Let R = Q for simplicity.
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Theorem 3.7. Let m,n ≥ 2 and the pair (m,n) be in Mather’s nice range. Let
M be connected, oriented and of dimension m, and N = Rn, oriented. Then,

• If n > m+1, näıve finite type invariants are polynomials of local invariants
modulo constants:

Vr/Vr−1 = Symr(V1/V0), V1/V0 = H1(C(A0)).

• If n ≤ m+1, näıve finite type invariants with non-transverse loci condition
are polynomials of local invariants modulo constants.

Remark 3.8. A similar theorem has already been known by different arguments
for generic immersions in cases of n = 2m(≥ 4) in [14, 13], and for n = 2m−1(≥ 5)
in [9]: For instance, näıve finite type invariants of generic immersions M2 → R4

are generated by the number of double points and the normal Euler number [14].
Notice that when taking n much less than 2m − 1, the number of unavoidable
singularities rapidly increases and the situation would be much more complicated.

3.3. Irreducibility. An elementary fact is that the locus Γ(a) is irreducible
in the sense that any f0, f1 ∈ Γ(a) − Γs+1 are joined by generic paths within the
locus Γ(a):

Lemma 3.9. Under the same assumption as in Theorem 3.7, the following
properties hold:

(1) Let v ∈ V ′
r , then ∇av is a constant for each r-tuple a.

(2) If n > m + 1, V ′
r = Vr.

(3) V ′
1/V ′

0 = H1(C(A0)).

Proof. (1) Let v ∈ V ′
r . By definition the r-th partial derivative ∇av is a

locally constant function Γ(a) − Γr+1 → Q. We show that ∇av is constant.
Let f0 ∈ Γ(a) − Γr+1, which has multi-singularities of type a at S ⊂ M and

T := f0(S) ⊂ Rn and no more complicated singularities. Put

Γ(a; f0) := { g ∈ M | g = f0 on some neighborhood of S },

which is an affine subspace of M contained in Γ(a). For any g ∈ Γ(a; f0) − Γr+1,
we can take a generic path γt from f0 to g in Γ(a; f0). Since v satisfies conditions
(NT) and (T), any jump of ∇av along γt is zero, hence ∇av(f0) = ∇av(g). Now
take another f1 ∈ Γ(a) − Γr+1 with multi-singularities of type a at some S1 and
T1 = f1(S1). Since Mm and Rn are connected and m,n ≥ 2, there exists an
1-parameter family (σt, τt) ∈ A0

M,N so that

• σ0 = idM and τ0 = idRn (trivial),
• σ1(S1) = S, τ1(T1) = T ,
• g1 := τ1 ◦ f1 ◦ σ−1

1 coincides with f on a neighborhood of S.
Since f1 and g1 are isotopic and g1 ∈ Γ(a; f0) − Γr+1, we have

∇av(f1) = ∇av(g1) = ∇av(f0).

Thus ∇av is constant on Γ(a) − Γr+1.
(2) Let n > m + 1. Then, in the proof of (1) above, we can choose the path γt

so that the image γt(M − S) does not pass through any point of T = f0(S), i.e.,
γt does not create any new multi-singularity mapped to a point of T . Namely, the
path γt meets only transverse self-intersection locus of Γ, thus Vr = V ′

r .
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(3) Let v ∈ V ′
1 . It follows from (1) that ∇αv is constant for each α of codimension

one. Put
cv :=

∑
α

(∇αv) · α ∈ C1(A0).

Since v is a locally constant function M− Γ → Q, the coherence relation around
each Γ(β) of codimension 2 is automatically satisfied:∑

α

[α; β] · ∇αv = 0, (∗)

i.e., ∂cv = 0, that means that v is a local invariant modulo constant. Lemma 3.6
shows local implies order one, thus the claim follows. ¤

Proof. (Theorem 3.7): By Lemma 3.9 (1), one can define a functional ∇a :
V ′

r → Q for each r-tuple a. Note that v ∈ V ′
r−1 if and only if ∇av = 0 for all

r-tuples a. Given a (r − 1)-tuple a′ and a singularity type β of codimension 2, the
relation (∗) in the proof of (3) generates a linear relation∑

α

[α;β] · ∇a′∪α = 0 (∗r)

among functionals ∇a = ∇a′∪α = ∇α · ∇a′
(That means a coherence relation for

locally constant functions ∇a′
v on Γ(a′) − Γr around Γ(a′ ∪ β), where v ∈ V ′

r ).
Consider the vector space spanned by the functionals indexed by a (|a| = r),

and let Ar denote the quotient modulo the relations (∗r) for all a′ and β:

Ar :=

⊕
|a|=r Q · ∇a

relations (∗)r
.

Then

• A natural pairing Ar × V ′
r → Q induces an injective linear map

V ′
r/V ′

r−1 → Hom(Ar, Q)

• Ar is naturally isomorphic to the Q-vector space of homogeneous differ-
ential operators of order r on the space V ′

1/V ′
0 .

So we have an injective linear map V ′
r/V ′

r−1 → Symr(V ′
1/V ′

0). It follows from
Lemma 3.6 that this map is surjective, thus it is an isomorphism. This completes
the proof. ¤

Remark 3.10. Theorem 3.7 says that the näıve definition of finite type invari-
ants for generic maps is somehow irrelevant. For improving the definition, there
come up several difficulties which depend on the pair of dimensions m,n. In case of
n ≤ m+1 (m,n ≥ 2), for instance, (m,n) = (2, 2) or (2, 3), the next task would be
to define ‘second order’ invariants for stable maps from M2 to R2 (or R3) involving
non-transverse self-intersection loci. To define ‘non-local’ invariants, we must add
some data on the global configuration of critical curves or double point curves of
maps: Those data are used to identify connected components of Γ(a) − Γs+1. In
case of n > m + 1 (m ≥ 2), for instance, (m,n) = (2, 4), the difficulty is different
from the above, and we need some completely new idea for ‘finite type’.
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Remark 3.11. Case of knots in 3-space (n = 1, m = 3).
(1) In case of knots, we should replace r-tuples a in the above argument by equiv-
alent classes of r-chord diagrams on S1, and Ar is generated by those classes of
r-chord diagrams divided by all 1- and 4-term relations, which are a sort of coher-
ence relations like (∗r) (see (2) below). As well-known, it holds that

Vr/Vr−1 = Hom(Ar, Q),

proved by M. Kontsevich. A purely combinatorial construction of knot invariants
using Actuality Table was given by Vassiliev [30], that might be applicable to our
setting.
(2) We have seen that if n > m + 1 and m ≥ 2, (NT) is automatically satisfied.
For maps S1 → R3, it’s not true. The triple point stratum Γ(τ), consisting of
immersions with a triple point τ , belongs to the non-transverse self-intersection
locus of Γ in our sense of Definition 1.6. Further, any path on the strata Γ(δ2)
of maps with two double points may come across Γ(τ) generically, so we can not
ignore this triple point stratum. In fact, the value of the jumps of invariants ∇δ2

v
at Γ(τ) yields a coherence relation, that is the 4-term relation, see [2, 30].

4. Characteristic classes for fiber bundles

4.1. Classifying space. Let M be a compact, connected oriented manifold.
We regard the affine space M = C∞(M, Rn) as a representation of the diffeomor-
phism group G = Diff M .

First, we shall recall a well-known construction (e.g., [8]) of the classifying space
of the topological group G = Diff M of orientation preserving diffeomorphisms. If
n is quite high, C∞(M, Rn) − Γ = Emb(M, Rn), the space of all embeddings of
M in Rn. Sending n → ∞, we may identify the classifying space of G with the
topological quotient

BG = B Diff M = Emb(M, R∞)/Diff M.

Put EG = Emb(M, R∞), then EG is highly connected, thus the canonical map
EG → BG gives the universal principal bundle for the group G. Let BM :=
(EG × M)/G, the associated manifold-bundle with fiber M , then any manifold-
bundle E → B (B paracompact), with fiber M and structure group G, can be
obtained up to isomorphisms from the universal bundle BM → BG via a classifying
map ρ : B → BG. Any element of H∗(BG) is called a universal G-characteristic
class: G-characteristic classes of E → B are defined by their ρ∗-image in H∗(B).

4.2. Degeneracy loci and universal polynomials. We are concerned with
the “geometric realization problem” of a given characteristic class for a manifold-
bundle E → B.

A Singularity Theory approach to this problem is as follows: Let us think of
the composition of an embedding of M and a projection onto Rn for some n small
enough,

M
incl //

f ##FFFFFFFF R∞

proj

²²
Rn



VASSILIEV TYPE INVARIANTS FOR GENERIC MAPPINGS, REVISITED 13

Put M = C∞(M, Rn) and BM → BG to be the associated bundle with fiber
M and group G. Now M is a contractible space, hence the Borel cohomology
H∗

G(M) := H∗(BM) is isomorphic to H∗
G(pt) = H∗(BG). The Vassiliev complex

has much meanings in this equivariant setting: There is a natural homomorphism

Tp : Hs(C(A)) → Es,0
∞ → Hs

G(M) ' H∗(BG).

We denote by Tpc ∈ H∗(BG) the G-characteristic class associated to a Vassiliev
cocycle c =

∑
λiai ∈ Cs(A), ∂c = 0. This means the following: Suppose that we

are given a bundle π : E → B with fiber M over a manifold B and a smooth map
f : E → Rn over the total space of the bundle. Denote by ρ = ρπ : B → BG the
classifying map associated to the bundle.

E
f //

π

²²

Rn

B

⇐⇒ BM

²²
B

f
<<zzzzzzzz

ρ
// BG

To any multi-singularity type a we associate the bifurcation locus Ba(f) ⊂ B,
which is a locally closed submanifold consisting of points b ∈ B so that the map
fb : Eb ' M → Rn obtained by the restriction to a fiber Eb = π−1(b) admits the
multi-singularity of type a at some finite points in Eb. Given a Vassiliev cocycle c :=∑

λiai and appropriately generic f : E → Rn, we can define the bifurcation cycle
Bc(f) to be the geometric cycle

∑
λiBai(f) in B: It is a geometric presentation

of the G-characteristic class so that

Dual [Bc(f)] = ρ∗Tpc.

The Thom polynomial theory for A-equivalence of map-germs (e.g. [19, 16, 17,
29]) says that for a Vassiliev cocycle of mono-singularities c =

∑
λαα, Tpc is

written by a universal polynomial in the relative Novikov-Landweber classes

π∗cl
I(Tπ) = π∗(cli11 (Tπ) · · · clik

k (Tπ))

where Tπ(= ker dπ) is the relative tangent bundle of π : E → B and cl means
a certain characteristic class of vector bundles, e.g., Pontrjagin class, Euler class
(with Z-coefficients), Stiefel-Whitney class (with Z2-coefficients). For cocycles of
A-multi-singularities, the same conjecturally holds, cf. Kazarian [16].

Here n should be reasonably small: For if we take n to ∞, any cocycles of BG
live in M− Γ, thus there is no chance to obtain nontrivial geometric presentations
by bifurcation loci.

We may think of the same story for some enriched Vassiliev complex instead
of the local complex of singularities. Some natural questions are, e.g., to find

- the precise forms of Tpc for given classes [c] ∈ H∗(C(A)),
- nontrivial relations among those Tpc’s,
- elements in H∗(Cen(A)) representing torsion elements of H∗(BG; Z).

Example 4.1. For example, in case that M is oriented circle S1,

H∗(BS1) = H∗(BU(1)) = Z[c1]

where c1 is the first Chern class of complex line bundles. In [15] it is shown that
the class c1 can be realized by some bifurcation locus of functions E → R or maps
E → R2 over total space E of a S1-bundle, and also universal polynomials TpΣ in
c1 for several types Σ are computed. When taking the target space Rn (n ≥ 3),
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it seems that c1 can not be realized by any bifurcation points, i.e., c1 lives in the
space of embeddings.

Example 4.2. Recall that for an oriented C∞-surface bundle π : E → B with
fiber a closed oriented surface M , the r-th Morita-Miller-Munford class er(E) ∈
H2r(B; Z) is defined to be the pushforward π∗e(Tπ)r+1 where Tπ is the relative
tangent bundle over the total space E and e(Tπ) ∈ H2(E; Z) is the Euler class. It
is easy to see that for r ≥ 1

TpΣ2 [f : E → Rr+1] = er(E),

that is, the class er(E) is realized by the Σ2-bifurcation locus of generic maps
E → Rr+1, where Σ2 means corank 2 singularities of germs R2, 0 → Rr+1, 0 (the
differential has kernel dimension ≥ 2):

[BΣ2(f)] = π∗[Σ2(f)] = π∗e(T ∗
π ⊗ f∗εr+1) = π∗e(T ∗

π )r+1 = er(E).

For instance, the first Morita-Miller-Mumford class e1(E) is geometrically observed
by using generic maps f : E → R2. If B is a closed surface, BΣ2(f) consists of
finite points in B, over which f : E → R2 has the singularity of type

I22 + II22 : (x, y; a, b) 7→ (x2 ± y2 + x3 + ay, xy + bx)

where x, y are local coordinates of fiber M and a, b are some local coordinates of the
base space B. As another example, there is a work by Saeki-Yamamoto [24] which
shows that e1(E) is realized by the codimension 2 bifurcation locus corresponding
to a special topological type of singular fiber of generic functions f : E → R: The
singular fiber contains three circle components each two of which meet at a nodal
point.

5. Contact equivalence for mappings

5.1. Global contact equivalence. Let M be a compact manifold of dimen-
sion m = n+d and N of dimension n+k. Let B be a k-dimensional compact closed
(regular) submanifold of N and p : M × N → M the projection to the first factor.
If f : M → N is transverse to B, then f−1(B) is a d-dimensional submanifold of
M ; If f is tangent to B at some points, then the preimage f−1(B) has singularities
of contact (K-)type at those points. Let p ∈ f−1(B) be a singular point, then the
contact singularity type at p is determined by the contact equivalence class of the
germ

π ◦ f : Rn+d, 0 → Rn, 0
where we take local coordinates of M and N centered at p and f(p) respectively,
and π : Rn+k, 0 → Rn, 0 denotes a submersion-germ defining B = π−1(0) locally.

We introduce an equivalence relation on M = C∞(M,N) to measure how a
map f : M → N is tangent to B: Define KM,N,B (or KB for short) to be the
subgroup of Diff(M × N) consisting of diffeomorphisms H which preserves both
the submanifold M × B and the fiber structure of p : M × N → M . C∞-maps
f, g : M → N are said to be KB-equivalent if there exists H ∈ KB such that H
sends the graph of f to the graph of g. Then, in particular, f−1(B) and g−1(B)
are isomorphic via some diffeomorphism of the ambient manifold M .

Let D∞ := {f ∈ M, codim KB .f = ∞} and U0 := M − D∞. f ∈ U0 if and
only if f−1(B) has finitely many singular points, each of which is of type K-finite.
In entirely the same way as in the case of Theorem 1.3, we have
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Theorem 5.1. D∞ has infinite codimension in M, and there exists a filtration

M ⊃ D := D1 ⊃ D2 ⊃ · · · ⊃ Ds ⊃ · · · ⊃ D∞,

by KB-invariant closed pseudo-algebraic subsets Ds of codimension s such that it
admits a topologically locally trival fibration πs : Ds −Ds+1 → Y ′

s so that each fiber
is an KB-orbit and Y ′

s is a finite dimensional manifold.

Example 5.2. 0) f ∈ M−D if and only if f is transverse to B.
1) D1 −D2 consists of maps f having one Morse singularity A1 on f−1(B), whose
contact type is K-equivalent to

A1,k : (x1, · · · , xd+1, z) 7→ (−x2
1 − · · · − x2

k + x2
k+1 + · · · + x2

d+1, z),

for some 0 ≤ k ≤ [d+1
2 ]. A1,k is coorientable, except for d odd, k = [d+1

2 ]. This is
the surgery to attach a k-handle to a smooth fiber.
2) Also D2 −D3 consists of maps f having either of
- two Morse singularities, or
- one A2-singularity (=cancelation of handle surgeries)：

A2,k : (x1, · · · , xd+1, y, z) 7→ (x3
1 + yx1 ± x2

2 ± · · · ± x2
d+1, y, z).

5.2. Thom-Pontrjagin construction. The classical construction is as fol-
lows: Now let M be a compact oriented d-manifold, and embed it in Euclidean
space Rd+n (n À 0). Let B := BSO(n), the Grassmannian of oriented n-planes in
Rd+n, and let ρ : M → B the map sending p ∈ M to the orthogonal plane to TMp,
i.e., the classifying map of the normal bundle of rank n. ρ is extended to a C∞-map
f from Sd+n = Rd+n ∪∞ to the Thom space Nn := MSO(n) (a neighborhood of
∞ mapped to the base point of Nn), then M = f−1(B). Let us consider the space
of such maps Sd+n → Nn (stationary around ∞), and denote it by

M := C∞(Sd+n, Nn)base, B := BSO(n) ⊂ Nn (n À 0).

It follows from Theorem 5.1 that there is a KB-invariant stratification

M ⊃ D := D1 ⊃ D2 ⊃ · · · .

If two points f, g ∈ M−D are joined by a generic path γ in M, then d-manifolds
f−1(B) and g−1(B) are cobordant, that is, each connected component of M corre-
sponds to a cobordism class: Ωori(d) = π0(M) (n → ∞). That was a basic theorem
of R. Thom.

More generally, a sort of global version of Martinet’s versality theorem holds,
see Kazarian [16, 17] (also [24]): Let e : Sd+n ×M → Nn be the evaluation map
e(p, f) := f(p), and H := e−1(B) the preimage of B. Denote by πB : H → M
the restriction of the second factor projection. Then, we may regard πB as the
“universal C∞ stable map”, and D as the “discriminant set of πB”:

Qd+p //

g

²²

H incl //

πB

²²

Sd+n ×M e // Nn

P p // M

That is, a suitably generic map g : Q → P corresponds to a smooth map P → M
which is transverse to each Ds.
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In case of d = 1, Saeki [23] has studied a cochain complex for topological
types of singular 1-dimensional fiber, which is an enriched Vassiliev complex for
KB-invariant filtration of D.

5.3. Näıve invariants. Let us take a connected component M1 of M, which
corresponds to a cobordism class of oriented closed d-manifolds. Then H0(M1−D)
is regarded as the space of invariants of all such d-manifolds belonging to the fixed
cobordism class.

Example 5.3. The ‘null-cobordant’ component in M can be replaced by

M0 = C∞(Sd+n, Sn)base, B = {0} ⊂ Sn, n À 0.

Note Ωori(1) = Ωori(2) = Ωori(3) = 0. So, in these cases, M = M0.

Näıve finite type invariants can be defined in the same way as in §3.1. However,
by entirely the same reason as seen in Theorem 3.7, the näıve finite type invariants
are reduced to polynomials of local invariants, such as the Euler characteristics
χ : M−D → Z, f 7→ χ(f−1(B)), cf. [25].

Instead, in order to keep the information of glueing maps of handle surgeries,
we need more restrictions, i.e., not to be allowed to make other surgeries freely.
A choice is to restrict us to a smaller mapping space: For instance, take an open
subset Mbetti of M0 so that f−1(B) has fixed Betti numbers. In case of d = 3, it
is nothing but the theory of finite type invariants for homology 3-spheres (Ohtsuki
[21]) and its generalization. We don’t know any result at all in this direction for
other dimensional cases.
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[2] Arnol’d, V. I. Topological invariants of plane curves and caustics, Univ. Lect. Series, vol. 5,
AMS, (1994).

[3] Arnol’d, V. I. The Vassiliev Theory of Discriminants and Knots, First European Congress

of Math., Paris, July 1992, Vol. 1, Birkhäuser, (1994), 3–29.
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[23] Saeki, O., Topology of Singular Fibers of Differentiable Maps, Lect. Notes Math. 1854,

Springer, 2004.
[24] Saeki, O and Yamamoto, T., Singular fibers and characteristic classes, Topology and its

Applications, vol. 155, 2 (2007), 112–120.

[25] Sirokova, N., The space of 3-manifolds, C. R. de l’Acad. Sci. 331, 2, 15 (2000), 131–136.
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