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This primitive art was created approximately 17,300 years ago in the Lascaux Cave, France.
The painter definitely knew, at least in a practical way, about the roundness of surfaces (i.e.,
curvature), the perspective and singularities of apparent contours (i.e., fold, cusp and double
fold). The geometry of apparent contours is the main theme of this talk.
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1 Looking at a line or a plane in 3-space

1.1 Perspective - Projection from a viewpoint

Perspective drawing in art is a technique based on facts in Projective Geometry.

Note that parallel lines are drawn on the canvas to have the same vanishing point. That is ex-
plained in the following picture:

Natural law of perspective:
- A point of the canvas represents a line passing through the viewpoint (called a viewline).
- A line on the canvas represents a plane containing the viewpoint.
- Any line in 3-space has the vanishing point on the canvas.
- Any plane in 3-space has the hozisontal line on the canvas.
- Parallel lines in 3-space have the same vanishing point.
- Parallel planes in 3-space have the same hozisontal line.
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A canvas is just a local chart of the ”space of viewlines”. Take the origin as the viewpoint. Our
space of viewlines should be taken as

• the projective plane P2 = the space of all viewlines = S 2/{±1}
• the 2-sphere S 2= the space of all oriented viewlines

1.2 Pappus’ Theorem

Example 1.1 (Pappus’ Theorem B.C. 300 ?) Let ` and `′ be two lines on the plane, and take
three points on each line and draw six lines as below. Then the points P,Q,R are colinear.

Here is a simple proof using projective geometry.
Imagine that you are drawing a picture of the ground plane on your canvas. Suppose that `′

is now the horizontal line on the canvas, so A′, B′,C′ are vanishing points, which correspond to
points at infinity. Suppose now that A, B,C, P,Q,R are points on the ground plane, and each pair
of above lines colored by red, blue and green represents a pair of two parallel lines in 3-space
lying on the ground.

Take the ground plane itself as a new canvas. Then, our points and lines are placed like as in
the right hand side; lines BP and CR, AG and BQ, AP and CQ are parallel on the new canvas
(=grand plane). In the Euclidean geometry, it is easy to show that 4DRP is similar to 4EQR,
thus lines PR and RQ coincide. The line PRQ in 3-space must be depicted as a line in original
canvas, so the claim is verified. This completes the proof.

The key idea in this proof is to change canvases, i.e., change the local chart of the space of
viewlines. Indeed, we simply take a projective transform, which sends the horizontal line to
infinity and preserves (co)linearity.
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Remark 1.2 Pappus’s theorem deals with two lines on the (projective) plane. It is generalized
to a theorem about any conic, that is Pascal’s theorem. In later centuries, those theorems were
quite much developed in the context of projective algebraic geometry: Of particular importance
is Bezout’s theorem, which says that the sum of multiplicities at the intersection points of given
two projecitve plane curves of degree m and n, respectively, is exactly equal to mn. In this talk we
will speak about enumerative geometry later, whose prototype goes back to Bezout’s theorem.

2 Looking at a surface in 3-space
Let M be a surface in R3 and take a view point p ∈ R3 − M. Instead of R3, we may consider

S 3 or P3 (also C3,CP3). We can define a natural projection centered at p

ϕp : M → P2

by sending each x ∈ M to the viewline px. Also let
contour generator := the set of critical points of ϕp (curve on M)
apparent contour := the set of critical values of ϕp (curve on P2)

In Sigularity Theory, we classify map-germs under a natural equivalence relation: f , g :
Rm, 0 → Rn, 0 are A-equivalent if there are diffeomorphism-germs σ, τ of source and target,
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respectively, so that the following diagram commutes:

Rm, 0
f //

'σ

��

Rn, 0

' τ
��

Rm, 0 g
// Rn, 0

Theorem 2.1 (Arnold (’79), Bruce (’84), Platonova (’86))
For a generic surface M, it holds that for any viewpoint p and any point x ∈ M, the germ

ϕp : M, x→ P2, ϕ(x)

is equivalent to the germ (x, y) 7→ ( f (x, y), y) where f is one of the following list:

type codim. f (x, y) type codim. f (x, y)
0(regular) 0 x 7(seagull) 2 x4 + x2y + xy2

1( f old) 0 x2 8, 9(butter f ly) 2 x5 ± x3y + xy
2(cusp) 0 x3 + xy 10, 11 3 x3 ± xy4

3, 4(lips/beaks) 1 x3 ± xy2 12 3 x4 + x2y + xy3

5(goose) 2 x3 + xy3 13 3 x5 + xy
6(swallowtail) 1 x4 + xy

2.1 Curvature, Asymptotic line

According to the Gaussian curvature of the surface, points on the surface are classified into
three types. The parabolic curve separates M into two open domains; the domain of elliptic
points and the domain of hyperbolic points.

The asymptotic line at p ∈ M is the line having contact with M of order ≥ 3 at p, i.e., the line
along which the second fundamental form of M at p vanishes *1

*1 The ‘contact order’ may depend on the context: Here we regard the line transverse to M has first order contact
(revised in Feb. 2014).
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Every hyperbolic point has exactly two asymptotic lines, and those two lines degenerate into
one line at a parabolic point, and there is no asymptotic line at any elliptic point.

2.2 Stable projection: Codimension 0

type normal form
0(regular) (x, y) 7→ (x, y)

1( f old) (x, y) 7→ (x2, y)
2(cusp) (x, y) 7→ (x3 + xy, y)

1: Fold : Suppose that our viewline is tangent to M but not asymptotic, i.e., 2nd order contact.
Then, the projection produces a fold singularity.

Apparent contours at elliptic, hyperbolic and parabolic points, unless the viewline is asymp-
totic, correspond to fold singularities. Note that the above condition on viewlines is an open
condition, that implies that the fold singularity is stable (codimension 0).

2: Cusp : Let p be a hyperbolic point. Suppose that our viewline is asymptotic in the simplest
way, i.e., 3rd order contact with M. Then, the projection produces a cusp singularity.
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If you move the viewpoint, you always catch some other point close to p, at which the viewline
is asymptotic. This means that the cusp singularity is stable.

2.3 Singularities of Codimension 1

type miniversal unfolding
3, 4(lips/beaks) (x, y) 7→ (x3 ± xy2 + ax, y)
6(swallowtail) (x, y) 7→ (x4 + xy + ax2, y)

3, 4: Lips/Beaks（くちびる，くちばし） Let p ∈ M be a parabolic point. Then there is
only one asymptotic line. Suppose that our viewline is asymptotic: It has generically 3rd order
contact with M. Then, we have singularities of type Lips or Beaks:
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The set of all the asymptotic lines at parabolic points forms a ruled surface in 3-space. When
our viewpoint comes across the ruled surface, we observe the bifurcation of lips or beaks. The
ruled surface is called the bifurcation set of lisp/beaks type.

6: Swallowtail（ツバメの尾） Let p ∈ M be a hyperbolic point. Suppose that our view-
line is asymptotic. As seen above, if the contact is of order 3, we observe the cusp singularity.
Now let it be 4th order contact with M. Then, it creates a singularity of type swallowtail.

The locus of points of M corresponding to the swallowtail singularity is a curve in the hyper-
bolic domain of M. Take all the asymptotic lines at points of the curve, we obtain a ruled surface
in 3-space, being different from the one for lips/beaks. This is called the bifurcation set of swal-
lowtail type. When our viewpoint comes across this ruled surface, we observe the bifurcation of
swallowtail.

2.4 Singularities of Codimension 2

type miniversal unfolding
5(goose) (x, y) 7→ (x3 + xy3 + axy + bx, y)

7(seagull) (x, y) 7→ (x4 + x2y + xy2 + axy + bx, y)
8, 9(butter f ly) (x, y) 7→ (x5 ± x3y + xy + ax3 + bx2, y)

The bifurcation set of lips/beaks type may have singularities of itself. It is a ruled surface
as seen above. Generically speaking singularities of ruled surfaces are of type cuspidal edge
and swallowtail. Each point of the cuspidal edge of our bifurcation set of lips/beaks has a line
which is asymptotic at some parabolic point (a turning point of the asymptotic lines). That line
corresponds to the bifurcation of codimension two, named goose. Each point of the swallowtail
of the ruled surface corresponds to a type of the bifurcation of codimension three (no. 10, 11 in
the list of Platonova).

It also happens that the asymptotic line at a parabolic point is tangent to the parabolic line.
This corresponds to the bifurcation of gull.

The bifurcation set of swallowtail type also has singularities of itself. That is the bifurcation
of codimension two, named butterfly.
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5: Goose（がちょう）

7: Seagull（かもめ）

8：Butterfly（蝶々）

2.5 Summary (recoginization up to codim. 2)

• Elliptic pt K > 0 =⇒ Fold 1 (stable)
• Parabolic pt K = 0

=⇒


viewline is not asymp. → Fold 1 (stable)

viewline is asymp. →


3rd order→

 Lips/Beaks 3,4 (codim 1)

Goose 5 (codim 2)

4th order→ Gull 7 (codim 2)
• Hyperbolic pt K < 0

=⇒


viewline is not asymp. → Fold 1 (stable)

viewline is asymp. →


3rd order→ Cusp 2 (stable)
4th order→ Swallowtail 6 (codim 1)
5th order→ Butterfly 8,9 (codim 2)
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2.6 Multi-singularities

Multi-singularity, or multi-germ, is a germ of a map at finite points S = {x1, x2, · · · , xs}mapped
onto a single point y

π : M, S → P2, y

For instance, the double fold is a stable bi-germ (i.e., codim. 0):

• Multi-singularities of codimension 1
There are 10 different types (3 mono, 5 bi, 2 tri-germs)

• Multi-singularities of codimension 2
There are 18 different types, depicted in the next page.

• Multi-singularities of codimension 3
There are 4 types of mono-singularity of codim. 3, (no. 10–13) as seen in the list of Platonova.

But the list of multi-germs and bifurcation diagrams has not yet been completed.
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2.7 Incidence variety

Let M ⊂ P3 = the space of 1-dim. vector subspaces in R4. The Grassmannian of lines is

Gr(2, 4) := the space of 2-dim. vector subspaces in R4

= the space of projective lines in P3

Incidence variety of points and lines

I(P3) := { (p, `) ∈ P3 ×Gr(2, 4) | p ∈ ` }

I(P3)
p

}}{{
{{

{{
{{ q

$$IIIIIIIII

P3 Gr(2, 4)

Let
IM := p−1(M) = { (p, `) ∈ P3 ×Gr(2, 4) | p ∈ M, p ∈ ` } ⊂ I(P3)

IM

p

~~~~
~~

~~
~~ f :=q|IM

##GG
GG

GG
GG

G

M Gr(2, 4)

The singular set of f : IM → Gr(2, 4):

Σ1( f ) = { (x, `) | x ∈ ` ⊂ TxM }, (dim = 3)
Σ1,1( f ) = { (x, `), ` is asymptotic at x }, (dim = 2)
Σ1,1,1( f ) = { (x, `), ` is asymp. at x of 4th order }, (dim = 1)
Σ1,1,1,1( f ) = { (x, `), ` is asymp. at x of 5th order }, (dim = 0)

Σ1,1( f )
p
→ M: double cover of M ramified along the parbolic curve.

p(Σ1,1,1,0( f )) is a curve on M ↔ the swallowtail (no. 6).
p(Σ1,1,1,1( f )) consists of isolated pts↔ the butterfly (no. 8, 9).

Remark 2.2 If we take Q(P3) := { (p,H) ∈ P3 × P∗3, p ∈ H },

Q(P3)
p

||zz
zz

zz
zz q

""EE
EE

EE
EE

P3 P∗3

This diagram describes the projective duality and the Gauss map.
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3 Topology of Singular Views (complex case)
Let M be a complex projective surface of degree d (≥ 4):

M := { p ∈ CP3 | f (p) = 0 }, ( f is a homog. poly. of degree d)

Given a singularity type of codimension two, e.g., butterfly, .... Then, the viewlines along
which the projection is of that type are discrete.

The following questions are typical ones:

Q. How many viewlines of type butterfly bifurcation do exist?

Ans. ]Butterfly = 5d(d − 4)(7d − 12)

Q. How many viewlines tangent to the parabolic curve on M ?

Ans. ]Seagull = 2d(d − 2)(11d − 24)

Those kind questions can be solved by means of Thom polynomials.

3.1 Chern class of vector bundles

To a complex vector bundle ξ of rank n, the Chern class of ξ is defined in the integer cohomol-
ogy ring of the base space:

1 + c1(ξ) + · · · + cn(ξ) ∈ H∗(X;Z), ck(ξ) ∈ H2k(X).

Remark: For real vector bundle ξ of rank n, the Stiefel-Whitney class is defined the cohomology
of the base space with Z2-coefficients: wk(ξ) ∈ Hk(X;Z2).

Chern classes measures the difference between the vector bundle ξ and from the trivial vector
bundle εn, i.e., the direct product εn : Cn × X → X.

• If ξ adimits a trivial rank k subbundle εk ⊂ ξ, then

c j(ξ) = 0 ( j ≥ n − k + 1)
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• Let ξ1 be the tautological line bdle of CP1 and ε1 the trivial one. Then,

c1(ξ1) = −1, c1(ε1) = 0 ∈ H2(CP1;Z) ' Z

In fact, if one takes a section of ξ1 transverse to the zero section, then the intersection number is
expressed by c1(ξ1). Note that this picture is a conceptual one for complex line bundles, but it is
a precise picture for real line bundles. The total space of the tautological line bundle of RP1 ' S 1

is a Möbius strip, as depicted in the left, while the trivial line bundle is just an anulus, as depicted
in the right. The intersection number of a generic section and the zero section is defined modulo
2: In the left (Möbius), the intersection number is odd, while in the right (trivial) it is even,

w1(ξ1) ≡ 1, w1(ε1) ≡ 0 ∈ H1(RP1;Z2) ' Z2.

3.2 Thom polynomials

Classification of map-germs =⇒ ∃ theory of Thom polynomials

η : singularity type −→ T p(η) ∈ Z[c1, c2, · · · ]

so that given a map f : Nn → Pp and a type η of codim = n,

T p(η)(c( f )) = ] η-type singular points of f ∈ H2n(M) = Z

Formal computation of T p(Σ1,1,1,1) etc applied to our map

f : IM → Gr(2, 4)

gives the answer to the enumerative problem posed above.
E.g., In case of m = n,

T p(Σ1,1,1,1) = c4
1 + 6c2

1c2 + 2c2
2 + 9c1c3 + 6c4

where ci = ci( f ∗T P − T N).

Remark 3.1 In real case, we may replace Chern class ci by Whitney class wi, then we can
obtain Z2-enumeration, that is, the parity of the number of prescribed singularities. To obtain
integer value enumerations, we have to consider the problem of orientation. In this case T p is a
polynomial in Pontryagin class and Euler class (with Whitney class for representing the mod. 2
torsion).
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3.3 Tp for A-classification

More directly, Tp forA-classification of map-germs C2, 0→ C2, 0 is defined as

T pA(η) ∈ Z[c1, c2, c′1, c
′
2]

where ci, c′i are Chern classes of the source and of the target mfd. The following list is new *2:

lips/beaks −2c3
1 + 5c2

1c′1 − 4c1c′21 − c1c2 + c2c′1 + c′31
swallowtail −6c3

1 + 11c2
1c′1 − 6c1c′21 + 7c1c2 − 5c1c′2 − 5c′1c2 + 3c′1c′2 + c′31

goose 2c4
1 + 5c2

1c2 + 4c2
2 − 7c3

1c′1 − 10c1c2c′1 + 9c2
1c′21 + 5c2c′21

−5c1c′31 + c′41 − 2c2
1c′2 − 6c2c′2 + 4c1c′1c′2 − 2c′21 c′2 + 2c′22

gull 6c4
1 − c2

1c2 − 4c2
2 − 17c3

1c′1 + 4c1c2c′1 + 17c2
1c′21 − 3c2c′21

−7c1c′31 + c′41 + 2c2
1c′2 + 6c2c′2 − 4c1c′1c′2 + 2c′21 c′2 − 2c′22

butterfly 24c4
1 − 50c3

1c′1 − 46c2
1c2 + 35c2

1c′21 + 25c2
1c′2 + 55c1c2c′1 − 10c1c′31

−25c1c′1c′2 + 8c2
2 − 15c2c′21 − 10c2c′2 + c′41 + 6c′21 c′2 + 2c′22

I1,1
2,2 c2

2 − c1c2c′1 + c2c′21 + c2
1c′2 − 2c2c′2 − c1c′1c′2 + c′22

ForK-classification of map-germs, or stable map-germs, many actual computations have been
known. On the other hand, there are A-classification of map-germs: C1, 0 → C2, 0, C1, 0 →
C3, 0, ... , C2, 0 → C2, 0, C2, 0 → C3, 0, ..., C3, 0 → C2, 0, C3, 0 → C3, 0, ... For each of them,
one can consider Thom polynomials, but actual computations have not yet been done enough,
although we know the method for computation.

4 Topology of Singular Views (real case)
Let M ⊂ R3 be the graph of z = f (x, y) (‘the ground surface’), and letU := { z > f (x, y) } ⊂ R3

as the space of viewpoints.
Imagine that you are a bird flying over the ground. Fly freely in the sky, get different views.
Let p0, p1 ∈ U be your initial viewpoint and the final viewpoint, respectively.
Moving along the path from p0 to p1, you meet bifurcations of codimension one several times.

The view image is changed at each event when such a bifurcation occurs.

*2 revised in Feb. 2014
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Remember the list of multi-singularities of codimension 1

These 10 types are orientable. Let it be directed from left to right.

Question: How many times does such a bifurcation occurs when moving along a path in U,
taking account of signs ?

Define a functional ∆L : { generic paths inU } → Z by

∆L :=
∑
±1 when the Lips bifurcation occurs

∆B,∆S ,∆K0,∆K1,∆K2, · · · are also defined.

4.1 Vassiliev complex

We define an abstract cochain complex

0 // C1 ∂ // C2 ∂ // C3 // 0

C1 = Z10, freely generated by codim 1 multi-sing. L, B, S , ...
C2 = Z18, freely generated by codim 2 multi-sing. I, II, III, · · ·
C3 = Z??, freely generated by codim 3 multi-sing.
The coboundary operator ∂ : Ci → Ci+1 is defined:

∂c =
∑
σ

[c, σ]σ, (c = L, B, S , ...;σ = I, II, III, · · · )

16



[S , III] = 2, [B, III] = −2, [K1, III] = −1
[L, III] = [K0, III] = · · · = [T1, III] = 0

Do the same computations for other 17 types, then you get ∂ : C1 → C2.

Theorem 4.1 H1(C) = ker ∂1 has rank 3:

∆I1 = ∆L + ∆B + ∆S ,

∆I2 = ∆S + 2∆K1 + ∆C0 + ∆C1,

∆I3 = 2∆K0 + 2∆K2 + ∆C0 + ∆C1

These values depend only on points p0 and p1 of the path,
do not depend on the choice of paths from p0 to p1.

Theorem 4.2

2∆I1 = increment of the number of cusps
∆I2 + ∆I3 = increment of the number of double folds

∆I1 − ∆I2 + ∆I3 = the projective Thurston-Bennequin number
(i.e., ”self-linking number” of legendre lift)

Those are called local first order invariants of view maps M → P2.
=⇒ Theory of order one Vassiliv-type invariants for A-classification of map-germs (Vassiliev,
Arnold, Goryunov, Ohmoto-Aicardi, ...)

(m, n) object/singularities
(1, 1) functions on circle bundles/global max.-min. (Kazarian)
(1, 2) generic immersed curves, wavefronts (Arnold, Aicardi)
(1, 3) knots and links (Vassiliev)
(2, 1) Morse ft. (Saeki)
(2, 2) generic maps (Ohmoto-Aicardi)
(2, 3) generic maps (Goryunov)
(2, 4) generic immersions (Kamada etc)
(3, 2) generic maps (M. Yamamoto)
(3, 3) geneirc maps (Oset, Goryunov)
(3, 4) generic immersions (Catiana)
(3, 5) generic immersions (Ekholm, Takase)

5 Summary
• Local geometry of projections and extrinsic differential geometry of a surface in 3-space

is explained in detail.
• Enumerative problem of counting singularities can be solved by Thom polynomials
• The combinatorics among bifurcation diagrams for real singularities is encoded in the

Vassiliev complex, which provides some interesting topological invariants of mappings,
called local invariants.
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Modern Art integrates multiple views.
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